
The script-writer's dream:

How to write great SQL in your own language,

and be sure it will succeed

Ezra Cooper

University of Edinburgh

Abstract. We show how to translate expressions in a higher-order pro-
gramming language into SQL queries. Somewhat surprisingly, we show
that any suitable expression translates to a single SQL query, where the
suitability is determined by a type-and-e�ect check. Thus, unlike in Hol-
lywood where a script-writer can never be sure a movie sequel will be
popular, we show how to be sure that your SQL|written in your own
language|will succeed (in being translated).

Introduction

Language-integrated query is an approach to accessing relational databases from
a general-purpose programming language, which reduces the infamous \imped-
ance mismatch" [7], by allowing queries to be written with the full exibility of
the general language, and translating them to at relational queries (SQL, for our
purposes) when possible. The increased exibility may include features like func-
tional abstraction, permitting the refactoring of query fragments, or the ability
to form nested intermediate data structures having no relational equivalent|all
within the familiarity of the host language. Language-integrated query is exem-
pli�ed by the systems Kleisli [23], LINQ [13], Links [6], and Ferry [10].

These existing systems vary in their support of abstraction and degree of
totality. They do not always permit queries to be abstracted by refactoring query
fragments into parameterized functions, nor permit using prede�ned functions
in queries, even if those could be translated in their applied context|at least
not with the full exibility of �-calculus. As to totality, they generally make a
best e�ort to translate host-language expressions to queries, but may fail to do
so at runtime|either with a run-time error or by executing a query outside the
database; we call this partiality.

The increased exibility of general programming languages makes it di�cult
to recognize query-translatable expressions. Besides the problem of nested data
structures, programming languages normally have operations with no equivalent
in the query language, including recursion, side-e�ecting statements, and primi-
tive functions that simply aren't available. Existing versions of Kleisli, Links and
LINQ resolve the tension through partiality: they may not always transform the
expression completely to an SQL query. Instead they might give a run-time error
(in the case of LINQ) or they might evaluate the query expression directly by the

host language in a naive and ine�cient way (forgoing the bene�t of indexes, for
example). The consequence may be that the program behaves very ine�ciently,
with no indication until runtime that this happens. The Ferry system gives a
total translation, but without supporting abstraction.

This paper contributes to the science of language-integrated query by extend-
ing query translation to higher-order functions (permitting abstraction) and of-
fering a static test for translatability (ensuring totality at runtime, after passing
the static check). Thus you can \write SQL" in your own native programming
language, and be sure at compile time that it will succeed in translation.

Contributions The technical contributions of this paper include

1. a translation from any suitable expression of a typical impure, functional
programming language to an equivalent SQL query,

2. a type-and-e�ect system for statically checking this suitability
3. a generalization of existing results for unnesting relational algebra byWong [22]

to a higher-order calculus, and
4. a description of a proof of totality for the translation, securing a result by

Fegaras [8].

How it works The recipe for translating higher-order language-integrated queries
can be summarized as follows:

1. At compile time,

(a) Check that query expressions have a at relation type.
(b) Use a type-and-e�ect system to check that query expressions are pure.
(c) Generate two representations of each query-translatable expression: one

suitable for execution and one suitable for query generation.

2. At runtime, to execute an expression via SQL,

(a) Insert the values (query representations) for any free variables and
(b) Reduce it to eliminate intermediate structures (that is, functions and

nested data structures). This produces a normal form directly translat-
able to SQL.

Example

Suppose Alice runs a local baseball league. First, she wants a list of the players
with age at least 12. She might write this function (these examples use the syntax
of Links, which is a general-purpose language but is specially adapted to look
like a query language):

fun overAgePlayers() {

query { for (p <- players)

where (p.age > 12)

[(name = p.name)] }

}

(The for (x <- xs) e construct is a bag comprehension, and works as follows:
for each element in the bag denoted by xs, it evaluates e with x bound to that
element, producing a new bag; the result is the union of all those bags resulting
from the body. Comprehensions have a long history of use in programming lan-
guages from Haskell to Python and JavaScript. The construct where (e1) e2 is
simply shorthand for if e1 then e2 else [].) The compiler can deduce that
this expression is in fact equivalent to an SQL query, so it accepts the function.
However, the following code would give a compiler error:

fun overAgePlayersReversed() {

query { for (p <- players)

where (p.age > 12)

[(name = reverse(p.name))] } # ERROR!

}

This is because the reverse function has no SQL equivalent, and so no query is
equivalent to this expression.

Now, it takes nine players to make a baseball team, but some \teams" in
Alice's league are short of players. She needs to generate a mailing list of players
that belong to a full team. One way to do this is to collect, for each team, a
team roster (list of players) and then �lter for those with a roster of at least nine
elements. She writes the following code:

fun teamRosters() {

for (t <- teams)

[(name = t.name,

roster = for (p <- players)

where (p.team == t.name)

[(playerName=p.name)])];

}

fun usablePlayers() {

query {

for (t <- teamRosters())

where (length(t.roster) >= 9)

t.roster

}

}

Note the lack of brackets [] around the �nal t.roster: since the for compre-
hension takes the union of bags produced by the body, we here take the union
of satisfying rosters. This expression is equivalent to an SQL query, although
not in a direct way, since it uses an intermediate data structure that is nested
(teamRosters has type [(name:String, roster:[(playerName:String)])]),
and this is not supported by SQL. But since the �nal result is at, our analysis
accepts the query-bracketed expression and translates it into an equivalent SQL
query, such as this one:

select p.name as playerName

from players as p, teams as t

where (select count(*) from players as p2

where p2.team = t.name) < 9)

Also note that factoring out the part of the query which returns the bag of all
rosters posed no problem: the query translator will simply inline the function
and produce a single query.

Suppose now that Alice wishes to abstract the query condition on teams.
That is, she wishes to write a function which accepts as argument a roster
predicate, and produces a list of the player records belonging to those teams
satisfying the predicate. With the following code, the query translator will still
produce, in each invocation, a single SQL query:

fun playersBySelectedTeams(pred) {

query {

for (t <- teamRosters())

where (pred(t.roster))

t.roster

}

}

The query translator will ensure that any argument passed as pred is itself a
translatable function. If any call site tries to pass a untranslatable predicate, it
produces a compiler error.

This type of abstraction is particularly di�cult to achieve in SQL, since
the team rosters themselves cannot be explicitly constructed in SQL as part of a
query. SQL restricts how subqueries can be used (for example, in various contexts
they must return just one column, just one row, or both) and the subquery itself
must be changed if we apply an aggregate function to its single column.

For example, suppose we want to form a sub-league of \senior" teams: teams
with enough players of age 15. We might de�ne the following predicates:

fun fullTeam(list) { length(list) >= 9 }

fun seniorPlayers(list) { for (x <- list) where (x.age >= 15) [x] }

and use them as follows:

playersBySelectedTeams(fun(x) { fullTeam(seniorPlayers(x)) })

Here we have freely used length and a �ltering comprehension, despite the fact
that in SQL these are represented very di�erently:

select p.name as playerName

from players as p, teams as t

where (select count(*) from players as p2

where p2.team = t.name and p2.age >= 15) >= 9)

The application of count needs to be placed within the subquery, while the
comparison >= 9 is placed outside of it. Also the condition on p2.age must be
placed within the where clause of the subquery. It would not be easy to write a
\template" SQL query which would produce through string substitution all the
queries that playersBySelectedTeams does.

Microsoft's LINQ system allows abstraction of query predicates, provided
they are de�ned at a special type (the type of expressions). Because of the
special type, these predicates cannot directly be reused as ordinary functions,
and composition is not supported, so the last example would require explicitly

(terms) B;L;M;N ::= for (x L)M
j if B thenM elseN
j table s : T
j [M] j [] jM]N

j (
����!
l =M) jM:l
j LM j �x:N j x j c

j �(
�!
M)

j empty(M)
j queryM

(primitives) �
(table names) s; t
(�eld names) l

(types) T ::= o j (
��!
l : T) j [T] j S

e
! T

(base types) o ::= bool j int j string
(atomic e�ects) E ::= noqy j � � �

(e�ect sets) e a set of atomic e�ects

Fig. 1. Grammar of the source language.

rewriting the composed function fun(x) { fullTeam(seniorPlayers(x)) } as
a new function. This paper shows how such a system might support composition.

Road map The next sections (1) de�ne the core source language and its static
analysis, (2) translate it into SQL, (3) characterize the correctness of the al-
gorithm, and (4) extends it in two ways: with recursion and with the length
operator.

1 The Source Language

We de�ne a language which resembles the core of an ordinary impure functional
programming language, and is also a conservative extension of the (higher-order)
Nested Relational Calculus with side-e�ects and a query annotation. Its grammar
is given in Figure 1.

The terms [M], []and M]N represent bag (multiset) operations: singleton
construction, the empty bag, and bag union. The bag comprehension, written
for (x L)M , computes the union of the bags produced by evaluating M in
successive environments formed by binding x to the elements of L in turn. A
table handle table s : T denotes a reference to a table, named s, in some active
database connection; T designates the e�ective type of the table.

The conditional form if B thenM elseN evaluates to the value of either M or
N depending on the value of B.

Records are constructed as a parenthesized sequence of �eld-name{term pairs

(
����!
l = M) and destructed with the �eld projectionM:l. When speaking of a record

This work NRC

LM �x:N x LM �x:M x
if B thenM elseN if B thenM elseN

emptyM emptyM
c c

for (x L)M
S
fM j x 2 Lg

[] [M] M]N fg fMg M [N
table s : T x

(
����!
l =M) M:l (L;M) () �1 �2

�(
�!
M) M = N

queryM

Fig. 2. Nested Relational Calculus (NRC).

construction (
����!
l = M) we will indicate the immediate subterms by subscripting

the metavariable M with labels so that Ml is a �eld of (
����!
l = M) for each l 2

�!
l .

Similarly for record types (
��!
l : T) the �eld types will be indicated Tl when l 2

�!
l .

Functional abstraction �x:N and application LM are as usual. Variables
are ranged by x, y, z and other italic alphabetic identi�ers, but c ranges over
constants.

The language may contain primitive operations, ranged by �, which must
appear fully-applied (this is not a signi�cant restriction since one may abstract
over such expressions). The primitives should include boolean negation (:).

The form empty(M) evaluates to a boolean indicating whether the bag de-
noted by M is the empty bag or not.

The form queryM evaluates to the same value asM but instructs the compiler
that M must evaluate as an SQL query. An expression is translatable if it can
be so evaluated.

Terms are assigned types which can be: base types ranged by o, record types

(
��!
l : T) where each �eld label l is given a type Tl, bag types [T] and function

types S
e
! T , where S is the function domain, T is the range, and e is a set of

e�ects that the function needs permission to perform.

We consider e�ects abstractly; E ranges over some arbitrary set of e�ects,
which includes at least an e�ect noqy and may include other runtime actions
such as I/O or reference-cell mutations. Every e�ect should represent some kind
of runtime behavior that has no SQL equivalent; we use the distinguished e�ect
noqy to mark nondatabasable operations when no other e�ect presents itself.

For simplicity, this �rst calculus does not include the length operator; Sec-
tion 4.2 extends to include it.

NRC Comparison Compare this language with NRC as given by Wong [22]
(Figure 2). The two languages are nearly the same. Some apparent di�erences
are only notational. NRC's comprehension form

S
fM j x 2 Lg is identical to

ours, for(x L)M . The NRC literature uses set notation, fg, fMg, andM [N ,
but they can refer to any of the extended monads for bags, sets or lists. (Here
we treat only bags.) We write table handles explicitly as table s : T , with a name
s and required type annotation T , which facilitates local translation, while NRC
uses free variables to refer to tables.

A few di�erences are not notational. NRC is de�ned with tuples while we
use records, without loss of generality. We admit an arbitrary set of basic op-
erations � while NRC, at its core, includes no operations; these are treated as
extensions in the NRC literature. This formulation of NRC includes an equal-
ity test at each type; the equality at base types is treated as a basic operation
(ranged by �) in our calculus. Finally, our language extends NRC with the
translatability assertion queryM .

(In fact Wong [22] gives the same grammar as reproduced here, but the paper
goes on to treat �-abstractions as though they can only appear in application
position, as in (�x:N)M , e�ectively restricting the language to a �rst-order form.
Here we treat it in its full higher-order glory.)

Type-and-e�ect system The static semantics is de�ned by a type-and-e�ect sys-
tem in Figure 3. It is close to standard systems along the lines of Talpin and
Jouvelot [17]. The typing permits no recursion, and thus is analogous to simply-
typed �-calculus. We add recursion later using a �xpoint operator.

The system involves just one form of judgment, � `M : T ! e which can be
read, \In environment � , term M has type T and may take e�ects in the set e."

The type of each constant c is given as Tc, which should be a base type.
Constant values at complex type can, of course, be constructed explicitly.

We demand that each primitive � either has an SQL equivalent, �sql, or
carries a nonempty e�ect annotation. We also insist that primitives have basic
argument types and basic result type, or else have an e�ect annotation. The
limitation to base-type arguments means that functions like empty and length,
which anyway require special rewrite rules, cannot be de�ned as primitives.

For example, the primitives might include addition, (+) : int � int
?

! int,

which has an SQL equivalent, as well as print : string
noqy
�! (), which prints to the

terminal and has no SQL equivalent, and hence it carries an e�ect.
In keeping with the atness of SQL tables, we require that each table must

have at relation type: in table s : T we require T = [(
��!
l : o)] for some base-

membered record type (
��!
l : o).

An immediate type annotation is required on table expressions. This may
seem a nuisance; as a practical matter, however, it provides a direct way for
the programmer to check whether the usage type of a table agrees with the
underlying table's schema type in the DBMS.

The type system is monomorphic, so for example each appearance of the
empty bag []must be given some particular concrete type.

The main proposition we show is that if a term queryM has a typing deriva-
tion under these rules, then when any closing, well-typed substitution � is ap-
plied, it gives a term which can be translated to an equivalent SQL query.

.

� ` c : Tc ! ? (T-Const)

�; x : T ` x : T ! ? (T-Var)

�; x : S ` N : T ! e0

� ` �x:N : S
e
0

! T ! ?
(T-Abs)

� ` L : S
e
! T ! e0 � `M : S ! e00

� ` LM : T ! e [e0 [e00

(T-App)

� : S1 � � � � � Sn

e
! T

� `Mi : Si ! ei for each 1 � i � n

� ` �(
�!
M) : T ! e [

S
i
ei

(T-Op)

� `M : [T] ! e

� ` empty(M) : bool ! e
(T-Empty)

� `M : T ! ? T has the form [(
��!
l : o)]

� ` queryM : T ! ?
(T-Db)

T has the form [(
��!
l : o)]

� ` (table t : T) : T ! ?
(T-Table)

� `M : [S] ! e �; x : S ` N : [T] ! e0

� ` for (x M)N : [T] ! e [e0

(T-For)

� `Mi : Ti ! ei for each Mi : Ti in
���!
M : T

� ` (
����!
l =M) : (

��!
l : T) !

S
i
ei

(T-Record)

� `M : (
��!
l : T) ! e (l : T) 2 (

��!
l : T)

� `M:l : T ! e
(T-Project)

� ` [] : [T] ! ? (T-Null)

� `M : T ! e

� ` [M] : [T] ! e
(T-Singleton)

� `M : [T] ! e � ` N : [T] ! e0

� `M]N : [T] ! e [e0

(T-Union)

� ` L : bool ! e
� `M1 : T ! e0 � `M2 : T ! e00

� ` if L thenM1 elseM2 : T ! e [e0 [e00

(T-If)

� `M : T ! e e � e0

� `M : T ! e0
(T-Subsump)

Fig. 3. Type-and-e�ect system.

2 Making Queries

To make queries from the source language, we will rewrite source terms to a
sublanguage which translates directly and syntactically into SQL.

We �rst examine the sublanguage and its relationship to our SQL fragment,
then turn to the rewrite system.

SQL-like sublanguage The target sublanguage is given in Figure 4. Observe that
the \normal form" expressions ranged by V all have relation type: bag of record

of base type, or [(
��!
l : o)]. Types of the form (

��!
l : o) are called \row types," after

the database rows that they represent.

SQL The target SQL fragment is given in Figure 5. This includes all unions of
queries on an inner join of zero or more tables, with result and query conditions
taken from some given algebra of operations, including �eld projection, boolean
conjunction, negation, the exists operator, and conditionals case : : : end.

SQL translation The type-sensitive function J�K (Figure 6) translates each
closed term in the sublanguage directly into a query. (A �ne point: SQL has
no way of selecting an empty set of result columns in a select clause; to trans-
late [()] we need to o�er some dummy value, or *, as the result column. An
implementation can supply any such dummy value, remembering to ignore the
columns that the database actually returns.)

We assume, without loss of generality, that all bound variables in the source
program are distinct, thus there can be no clashes among the tables' as aliases
used in the from clause of the query.

Rewrite rules The translation of source terms into the SQL-isomorphic sublan-
guage is given as a rewrite system (Figure 7). We write M [L=x] for the substi-
tution of the term L for the free variable x in the term M .

A few rules beg explanation. The syntax of SQL permits conditional choices
only at the level of individual �elds, never at row or table level. Thus if-split
transforms a choice between two bags into the union of two oppositely-guarded
bags. Similarly, if-record pushes conditional choices at the row level down
to the level of �elds. As such, both of these rules (and only these) are type-
sensitive. The empty-flatten rule ensures that the argument to empty can
be normalized to one of the query normal forms of Figure 4, which requires
that it have relation type. Rules like app-if are common in higher-order rewrite
systems: app-if pushes the deconstructor (�)M past an interposing form, in
order to bring it together with corresponding constructors (here �x:N) thus
exposing �-reductions.

Several rules may seem unnecessary if we were to use SQL subqueries. For
example, why employ the for-assoc rule if we can write an SQL query that
uses a nested select statement in its from clause? After all, we could more directly
translate the expression

for (y for (x table s : T) [(b = x:a)]) [(c = y:b)]

into SQL as follows:

select y:b as c from (select x:a as b from s as x) as y:

The nested comprehension became a nested subquery. Why then for-assoc?
The answer is that such rules are critical to the unnesting. Watch how we

rewrite this query, which internally constructs a nested bag-of-bag type, not an
SQL-representable type:

for (y (for (x table s) [[x]]) y (for-assoc)

for (x table s) (for (y [[x]]) y) (�-for)

for (x table s) [x]

(query normal forms) V;U ::= V] U j [] j F
(comprehension NFs) F ::= for (x table s : T) F j Z
(comprehension bodies) Z ::= if B thenZ else [] j [R] j table s : T

(row forms) R ::= (
���!
l = B) j x

(basic expressions) B ::= if B thenB0 elseB00 j empty(V) j

�(
�!
B) j x:l j c

Fig. 4. SQL-like sublanguage.

Q;R ::= Q union all R j S

S ::= select�!s from
���!
t as x where e

s ::= e as l j x: �

e ::= case when e then e0

else e00

end j

c j x:l j e ^ e0 j :e j exists(Q) j �(�!e)

Fig. 5. Target SQL fragment.

JV] UK = JV K union all JUK

J[] : [(
��!
l : T)]K = select

����!
null as l from? where false

Jfor (x table s : T) F K = select
��!
e as l from s as x;

���!
t as y where e

where (select
��!
e as l from

���!
t as y where e) = JF K

Jif B thenZ else []K = select
��!
e as l from

�!
t where e0 ^ JBK

where (select
��!
e as l from

�!
t where e0) = JZK

Jtable s : [(
��!
l : o)]K = select

����!
s:l as l from s where true

J[R]K = select JRK from? where true

J(
���!
l = B)K =

�����!
JBK as l

JxK = x: �

Jif B thenB0

elseB00K = case when JBK then JB0K else JB00K end

Jempty(V)K = :exists(JV K)

J�(
�!
B)K = �sql(

��!
JBK)

Jx:lK = x:l

JcK = c

Fig. 6. Translation from normalized terms to SQL.

for (x [M])N : T N [M=x] (for-�)

(�x:N)M : T N [M=x] (abs-�)

(
����!
l =M):l : T Ml (record-�)

for (x [])M : T [] (for-zero-l)

for (x N) [] : T [] (for-zero-r)

for (x for (y L)M)N : T for (y L) (for (x M)N) if y 62 fv(N)

(for-assoc)

for (x M1]M2)N : T for (x M1)N] for (x M2)N

(for-union-src)

for (x M) (N1]N2) : T for (x M)N1] for (x M)N2

(for-union-body)

for (x if B thenM else [])N : T if B then (for (x M)N) else []

(for-if-src)

(if B thenL elseL0)M : T if B thenLM elseL0M (app-if)

if B thenM elseN : (
��!
l : T) (

���!
l = L) (if-record)

with Ll = if B thenM:l elseN:l for each l 2
�!
l

if B thenM elseN : [T] if B thenM else [] if N 6= []

] if :B thenN else [] (if-split)

if B then []else [] : T [] (if-zero)

if B then (for (x M)N) else [] : T for (x M) (if B thenN else []) (if-for)

if B thenM]N else [] : T if B thenM else []]

if B thenN else [] (if-union)

empty(M) : T empty(for (x M) [()]) (empty-flatten)

if M is not relation-typed

queryM : T M (ignore-db)

Fig. 7. The rewrite system for normalizing source-language terms.

And so the data is unnested. The for-assoc rule thus exposes �-reductions,
which themselves eliminate other constructor/destructor pairs and so reduce
the types of intermediate values.

3 Correctness

To show that the translation is correct, we show that the rewrite rules are sound
with respect to the static semantics, the rewrite system is strongly normalizing,
and its normal forms are the ones given earlier. We merely state the results here;
full proofs can be found in an accompanying technical report [5].

Soundness

We use the rewrite rules only on pure terms, so the soundness proposition says
that types and purity are preserved by rewriting.

Proposition 1 If M M 0 and ` M : T ! ? with T a relation type then

`M 0 : T ! ?. Furthermore M � V gives then ` V : T ! ?.

In fact, the rewrite rules fail to preserve e�ects in general, since they may
relocate, remove, and duplicate subterms and their e�ects.

Totality

We want the translation really to give a query for every well-typed query ex-
pression. First we show that the rewrite rules strongly normalize|they admit
no in�nite reduction|then that the normal forms fall into the SQL target.

Proposition 2 Any well-typed term strongly normalizes.

The proof uses the reducibility with >>-lifting approach of Lindley and
Stark [12]; our for construct is simply the let of the monadic metalanguage, and
there is some additional work to deal with the rule if-for, since it, unusually,
pushes a context inside the binder of another.

Proposition 3 (Normal forms) Closed, well-typed terms of e�ect-free rela-

tion type have normal forms that satisfy the grammar of Fig. 4.

The proof goes in two steps; �rst, by induction on the structure of terms, we
establish a grammar of all normal forms, where destructors are all pushed to the
inside with constructors on the outside. Then, arguments based on the type and
e�ect of query expressions narrow the grammar to the one of Fig. 4.

4 Extensions

4.1 Recursion

A general-purpose programming language without recursion would be severely
hobbled; but in standard SQL, many recursive queries are not expressible. Thus
we need to add recursion to our language but ban it from query expressions.

We add recursion by introducing a recursive �-abstraction as follows. It in-
troduces a recursive function of one argument and forces an e�ect on its type.

�; f : S
e[fnoqyg
�! T; x : S `M : T ! e

� ` recfun f x = M : S
e[fnoqyg
�! T ! ?

(T-RecFun)

This prohibition is strong; some recursive functions may be expressible in
SQL, and it will be interesting to see if a stronger translation can be given for
recursive functions.

4.2 Length operator

The examples in Section 1 used a function length which we have not yet studied.
This section shows how to extend the system to support it. In the source, it is
much like empty, but SQL's nonuniformity forces us to handle it specially.

First we extend the source language with length:

M ::= � � � j length(M)

The typing rule is as you would expect, resulting in type int.
Extend the SQL-like sublanguage (the normal forms) as follows:

B ::= � � � j length(F)

Note that we will normalize the argument to a comprehension normal form, F ,
so that it gives a select query and not, say, a union all query. Next, augment the
SQL target:

e ::= � � � j select count(�) from
���!
t as x where e

And hence we can translate it to SQL as follows:

Jlength(F)K = select count(�) from
���!
t as x where e

where select�!s from
���!
t as x where e = JF K

Now we add the following rewrite rules:

length(M) : T length(for (x M) [()]) (length-flatten)

if M is not relation-typed

length([]) : T 0 (length-zero)

length(M]N) : T length(M) + length(N) (length-union)

Thus assumes, of course, that we have the constant 0 and the integer-addition
operation (+) in our set of constants and primitives.

5 Related Work

The science of language-integrated query is young. It might begin with Thomas
and Fischer [18], who �rst de�ned an algebra of nested relations, thus freeing
queries from the atland of the 1st-normal-form restriction.

Paradaens and Van Gucht [14] gave the �rst unnesting result, showing that
nested relational algebra, when restricted to at input and output relations, is
equivalent in power to traditional at relational algebra. Wong [22] soon ex-
tended this result, showing that any �rst-order nested relational algebra ex-
pression can be rewritten so that it produces no intermediate data structures
deeper than the greatest of its input and output relations. Suciu [15] showed
that the unnesting holds even in the presence of recursion, through a �rst-order
�xed-point combinator. Suciu and Wong [16] show how �rst-order functions in
a higher-order NRC can be implemented in �rst-order NRC, provided all the
primitive functions have a semantic property called \internal," which requires
that they do not output basic values not contained in their input.

Fegaras [8] also shows how to transform higher-order nested relational queries
into at ones using a rewrite system with similarities to ours; we extend this
by o�ering a proof of normalization, taking the queries all the way to SQL, and
showing how a type-and-e�ect system can separate the translatable and untrans-
latable fragments of a general-purpose language. Van den Bussche [20] extended
Wong's �rst-order result to show that even nested-result-type expressions can
be simulated with the at relational algebra, using an interpretation function
which assembles the at results into a nested relation.

The e�ort to harmonize query languages with programming languages is
nearly as old as the two �elds themselves. Atkinson and Buneman [1] survey
the early history of integration. The impedance mismatch problem between
databases and programming languages is described by Copeland and Maier [7].

The use of comprehension syntax was a breakthrough for language integra-
tion, since it gave an iteration construct that was both powerful enough for much
general-purpose programming and also explicit enough to admit a more direct
translation to a query language; this connection is explored by many authors [19,
2, 4, 11]. Grust [9] summarizes much preceding work on monad comprehensions
as a query language.

In a di�erent setting, Wiedermann and Cook [21] present a technique, using
abstract interpretation, for extracting structured queries from imperative, object-
oriented program code, where method dispatch rather than �rst-class functions
is the means of query abstraction.

Kleisli [3, 23] is a functional programming system that allows querying a
variety of data sources|including at relational databases|and allows the use
of nested relations as intermediate values and as results. The Kleisli system
heuristically pushes constructs inside an SQL query, perhaps leaving some code
untranslated. At run-time, it always correctly executes an expression, whether
or not it is translatable to SQL. The Kleisli approach has the advantage that all
query translation can be done at compile-time.

The LINQ project [13] integrates queries into several programming languages,
using an object-oriented interface for forming queries; a comprehension-like syn-
tax is also provided. The interface works with many data sources, including
relational DBMSes. In LINQ, one writes query fragments (e.g. conditions and
transformations) using a language-level quoting mechanism which captures the
code for use at runtime. Quoted and unquoted expressions give di�erent types
of values, and they are not interchangeable; in particular, quoted functions can-
not be applied to produce new quoted functions, so compositionality is ham-
pered. When translating an expression, LINQ may (a) produce a run-time error,
(b) partition the expression into an SQL query and pre- and post-processing
phases executed outside SQL, or (c) translate the expression completely to SQL.

The Links project [6] also o�ers language-integrated query. The original ver-
sion of Links, like Kleisli, always correctly executes an expression but may not
translate it to SQL; Links' execution may be very naive and perhaps ine�ecient.

Ferry [10] is a new system which translates a �rst-order nested query with a
nested result into multiple at SQL queries (a �xed number based on the type),
expanding on Van den Bussche and translating the queries all the way to SQL.

Conclusion and Future Work

Expanding on a rich history of theoretical results, we have shown how to ex-
tract SQL queries from a host programming language with higher-order func-
tions, using comprehensions as a natural query primitive, as well as a static
discipline for checking the translatability of expressions. This permits the �rst
language-integrated-query system which supports functional abstraction and has
a runtime SQL translator that is total|that is, once the static check passes, the
runtime translator will succeed in translating the expression completely to SQL.

We prevented unlabelled recursion using monomorphic simple types, but
polymorphism is essential in programming, so we aim to accomodate it. Sam
Lindley has developed a calculus, Frak, which uses type kinds to constrain
type variables in a polymorphic calculus, and incorporates e�ect inference.

We targeted a modest sublanguage of SQL, but would like to go further. For
example, we might like to take advantage of grouping and aggregation (using
the group by clause of SQL) and the nonstandard limit and offset clauses to
fetch subrows. Also, supporting an ordered list type would be useful; the Ferry
system handles ordered data, which we hope will inspire further results.

The query annotation proposed may be useful for asserting that an expres-
sion be SQL-translatable; but the programmer may instead want to allow the
compiler more exibility, e.g. to partition the expression into an SQL query and
pre- and post- processing phases, along the lines of what is normally done in
LINQ and Kleisli. A science of such partitioning may be called for; this might
allow the programmer to write even more query expressions while retaining a
high degree of con�dence in their run-time e�ciency.

References

1. Malcolm P. Atkinson and O. Peter Buneman. Types and persistence in database
programming languages. ACM Comput. Surv., 19(2):105{170, 1987.

2. Val Breazu-Tannen, Peter Buneman, and Limsoon Wong. Naturally embedded
query languages. In ICDT '92. Springer, 1992.

3. P. Buneman, S. B. Davidson, K. Hart, C. Overton, and L. Wong. A data transfor-
mation system for biological data sources. In VLDB '95, pages 158{169, 1995.

4. Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong. Com-
prehension syntax. SIGMOD Record, 23:87{96, 1994.

5. Ezra Cooper. The script-writer's dream: How to write great SQL in your own
language, and be sure it will succeed (tech report). Technical Report EDI-INF-
RR-1327, University of Edinburgh, May 2009.

6. Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web pro-
gramming without tiers. In FMCO '06, 2006.

7. George Copeland and David Maier. Making smalltalk a database system. SIGMOD

Rec., 14(2):316{325, 1984.
8. Leonidas Fegaras. Query unnesting in object-oriented databases. In SIGMOD '98,

pages 49{60, New York, NY, USA, 1998. ACM.
9. Torsten Grust. The Functional Approach to Data Management, chapter Monad

comprehensions, a versatile representation for queries. Springer Verlag, 2003.
10. Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. Ferry: Database-

supported program execution. In SIGMOD '09, June 2009.
11. Torsten Grust and Marc H. Scholl. How to comprehend queries functionally. J.

Intell. Inf. Syst., 12(2-3):191{218, 1999.
12. Sam Lindley and Ian Stark. Reducibility and >>-lifting for computation types.

In TLCA '05, pages 262{277, 2005.
13. Microsoft Corporation. The LINQ project: .NET language integrated query. White

paper, September 2005.
14. Jan Paredaens and Dirk Van Gucht. Possibilities and limitations of using at

operators in nested algebra expressions. In PODS '88, pages 29{38, New York,
NY, USA, 1988. ACM.

15. Dan Suciu. Fixpoints and bounded �xpoints for complex objects. In DBPL '93,
pages 263{281, 1993.

16. Dan Suciu and Limsoon Wong. On two forms of structural recursion. In ICDT '95,
page 111. Springer, 1995.

17. Jean-pierre Talpin and Pierre Jouvelot. The type and e�ect discipline. In Infor-

mation and Computation, pages 162{173, 1992.
18. S. J. Thomas and P. C. Fischer. Nested relational structures. Advances in Com-

puting Research, 3:269{307, 1986.
19. Phil Trinder. Comprehensions, a query notation for DBPLs. In DBPL '91, San

Francisco, CA, USA, 1992.
20. Jan Van den Bussche. Simulation of the nested relational algebra by the at

relational algebra, with an application to the complexity of evaluating powerset
algebra expressions. Theoretical Computer Science, 254(1-2):363{377, 2001.

21. Ben Wiedermann and William R. Cook. Extracting queries by static analysis of
transparent persistence. In POPL '07, 2007.

22. Limsoon Wong. Normal forms and conservative extension properties for query
languages over collection types. J. Comput. Syst. Sci., 52(3):495{505, 1996.

23. Limsoon Wong. Kleisli, a functional query system. J. Functional Programming,
10(1):19{56, January 2000.

