Links: Web Programming Without Tiers*

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop

University of Edinburgh

Abstract. Links is a programming language for web applications that generates
code for all three tiers of a web application from a single source, compiling into
JavaScript to run on the client and into SQL to run on the database. Links sup-
ports rich clients running in what has been dubbed ‘Ajax’ style, and supports
concurrent processes with statically-typed message passing. Links is scalable in
the sense that session state is preserved in the client rather than the server, in
contrast to other approaches such as Java Servlets or PLT Scheme. Client-side
concurrency in JavaScript and transfer of computation between client and server
are both supported by translation into continuation-passing style.

1 Introduction

A typical web system is organized in three tiers, each running on a separate computer
(see Figure ??). Logic on the middle-tier server generates pages to send to a front-end
browser and queries to send to a back-end database. The programmer must master a
myriad of languages: the logic is written in a mixture of Java, Perl, PHP, and Python;
the pages described in HTML, XML, and JavaScript; and the queries are written in SQL
or XQuery. There is no easy way to ensure that data interfaces between the languages
match up — that a form in HTML or a query in SQL produces data of a type that the
logic in Java expects. This is called the impedance mismatch problem. The problem
is exacerbated because code for the browser or database is often generated at runtime,
making web applications error prone and difficult to debug.

Links eliminates impedance mismatch by providing a single language for all three
tiers. In the current version, Links translates into JavaScript to run on the browser
and SQL to run on the database. The server component is written in O’Caml; it con-
sists of a static analysis phase (including Hindley-Milner typechecking), a translator to
JavaScript and SQL, and an interpreter for the Links code that remains on the server. All
run-time code generation is performed by the compiler in a principled manner, rather
than by the programmer using techniques such as string processing; principled gener-
ation of this code makes applications less error prone and easier to debug, as well as
making it now possible to perform type checking for information passed between the
three tiers. The programmer still needs to think about which code runs in which loca-
tion, especially regarding security of data, but now in a context where the fundamental
properties of well-formed code and well-typed data are guaranteed.

Increasingly, web applications designers are migrating work into the browser. “Rich
client” systems, such as Google Mail and Google Maps, use a new style of interaction

* Submitted to FMCO ‘06

request query

Browser Server
(HTML, XML, (Java, Perl, PHP,
JavaScript) Python, Ruby)

Database
(SQL, XQuery)

response result

Fig. 1. Three-tier model

dubbed “Ajax” [?]. Client-side Links compiles into JavaScript, a functional language
widely available on most browsers. JavaScript is notoriously variable across platforms,
so we have designed the compiler to target a common subset that is widely available. It
would be easy to extend Links to support additional target languages, such as Flash or
Java. However, we expect the popularity of Ajax will mean that standard and reliable
versions of JavaScript will become available over the next few years.

Links is a strict, typed, functional language. It incorporates ideas proven in other
functional languages, including:

— database query optimization, as found in Kleisli and elsewhere,
— continuations for web interaction, as found in PLT Scheme and elsewhere, and
— concurrency with message passing, as found in Erlang and elsewhere,

All three of these features work better with immutable values rather than mutable ob-
jects. In Links, side effects play a limited (though important) role, being used for up-
dates to the database and display, and communication between concurrent processes.
Types ensure consistency between forms in the browser, logic in the server, and queries
on the database—and between senders and receivers in a concurrent program.

Links programs are scalable in the sense that session state is preserved in the client
rather than the server. Many commercial web tools (like J2EE) and most research web
tools (including current releases of PLT Scheme [?] and Mozart QHTML [?]) are not
scalable in this sense.

In Links, all server state is serialized and passed to the client, then restored to the
server when required. This resumption passing style extends the continuation passing
style commonly used in PLT Scheme and elsewhere. Links functions are labelled as to
whether they are intended to execute on the client or the server; functions running on
the client may invoke those on the server, and vice-versa.

Database programming. Queries are written in the Links notation and compiled into
SQL, a technique pioneered by Kleisli [?,?] and now used in LINQ [?].

Web interaction. The notion that a programming language could provide support for
web interaction first appears in the programming language MAWL [?]. The notion of
continuation from functional programming has been particularly fruitful, being applied
by a number of researchers to improve interaction with a web client, including Quiennec

[?], Graham [?] (in a commercial system sold to Yahoo and widely used for building
web stores), Felleisen and others [?,?], and Thiemann [?].

Concurrency. Links supports concurrent programming in the client, using “share noth-
ing” concurrency where the only way processes can exchange data is by message pass-
ing, as pioneered in Erlang [?] and Mozart [?].

XML programming. Links provides convenient syntax for constructing XML data, sim-
ilar to that provided by XQuery [?]. The current version does not support regular ex-
pression types, as found in XDuce and other languages, but we may add them in a future
version. Regular expression types were given a low priority, because they are already
well understood from previous research [?].

Other languages. Other languages for web programming include Xtatic [?], Scala [?],
Mozart [?], SML.NET [?], Ff [?], Cw (based on Polyphonic Cf [?] and Xen [?]),
HOP [?] and Ocsigen [?]. These languages have many overlaps with Links, as they
are also inspired by the functional programming community.

However, none of these languages shares Links’ objective of generating code for
all three tiers of a web application from a single source — scripts for the front-end
client, logic for the middle-tier server, and queries for the back-end database. We expect
that providing a single, unified language as an alternative to the current multiplicity of
languages will be a principal attraction of Links.

This paper. We introduce Links by describing three examples in Section ??. Section ??
sketches our features for concurrency and client-server interaction. Section ?? gives
an SQL-compilable subset of Links and details how it is compiled into SQL, while
Section ?? describes “mailbox typing” for message-passing. Section ?? discusses some
shortcomings of the current implementation and Section ?? concludes.

2 Links by example

This section introduces Links by a series of examples. The reader is encouraged to try
these examples online at

http://groups.inf.ed.ac.uk/links/examples/

We begin with an example to introduce the basic functionality of Links, and then
present two further examples that demonstrate additional capabilities: a draggable list,
and a progress bar.

2.1 Dictionary suggest

The Dictionary Suggest application presents a text box, into which the user may type a
word. As the user types, the application displays a list of words that could complete the
one being typed. A dictionary database is searched, and the first ten words beginning
with the given prefix are presented (see Figure ??). In addition, the user can add, update

Dictionary suggest

Search for definitions

fun
Click a definition to edit it

fun Sport; merriment; frolicsome amusement.
funambulate To walk or to dance on a rope.
funambulation Ropedancing.

funambulatory Narrow, lie the wallk of a ropedancer
funambulatory Performing lile a ropedancer.
funambulist & ropewalker or ropedancer.

funambulo Al of Funambuhis

funambulus A repewalker or ropedancer.

Word: function

& public or social ceremony or gathering: a festivity or entertainment,
esp. one somewhat formal.

Ieaning:

function A quantity so connected with another quantity, that if any alteration be made in the latter there will be a consequent alteration
in the former. Each quantity 15 said to be a function of the other. Thus, the circumference of a circle 12 a finction of the diameter. Ifx be
a symbol to which different numerical values can be assigned, such expressions as 22, 3x, Log. %, and Sin. =, are all fonctions of =

New definition

Word:

Ieaning:

Add

Fig. 2. Dictionary Suggest screenshot. An entry for “function” appearing in the word list has just
been clicked, so its entry has expanded into an editable form.

and delete a definition by clicking on it. To add a new definition the user fills in and
submits the form at the bottom of the page by clicking ‘Add’.

To update an existing definition the user clicks on one of the suggestions, which
then expands into a form containing the existing definition; then the user edits the form
and submits it by clicking ‘Update’. This form also includes buttons for cancelling the
update (which restores the original suggestion) and deleting the definition.

This application is of interest because it must perform a database lookup and update
the display at every keystroke. Applications such as Google Suggest [?] have a similar
structure.

The Links version is based on an ASP.NET version, available online [?], using the
same data. It extends the ASP.NET version by allowing the definitions to be added, up-
dated and deleted. The dictionary contains 99,320 entries. For comparison, the ASPNET
version responds to a keystroke in about 0.1s (due to the difficultly of instrumenting
third-party code, measurements were made with a stopwatch. The average of a dozen
measurements, allowing for a similarly measured reaction time, was 0.1s). In the Links

var defsTable =

table "definitions" with

(id:String, word:String, meaning:String)
where id readonly from database "dictionary";

fun newDef (def) server { insert defsTable values [def] }
fun updateDef (def) server ({

update (var d <-- defsTable) where (d.id == def.id)

set (word=def.word, meaning=def.meaning)

}

fun deleteDef(id) server {

delete (var def <-- defsTable) where (def.id == 1id)

}

fun completions(s) server ({
if (s == "") [] else {
take (10, for (wvar def <-- defsTable)
where (def.word ~ /s.x/) orderby (def.word)
[def])

fun suggest (s) client {
replaceChildren(format (completions(s)),
getNodeById("suggestions"))

fun editDef (def) client {
redraw (
<form l:onsubmit="{

var def = (id=def.id, word=w, meaning=m); updateDef (def);
redraw (formatDef (def), def.id)}" method="POST">
<table>

<tr><td>Word:</td><td>

<input 1:name="w" value="{def.word}"/></td></tr>

<tr><td>Meaning:</td><td>
<textarea l:name="m" rows="5" cols="80">
{stringToXml (def.meaning) }</textarea></td></tr>
</table>
<button type="submit">Update</button>
<button l:onclick="{redraw(formatDef (def), def.id)}">

Cancel</button>
<button l:onclick="{deleteDef(def.id); redraw([],def.id)}"
style="position:absolute; right:0px">Delete</button>
</form>,
def.id)

Fig. 3. Dictionary suggest in Links (1)

fun redraw(xml, defId) client {
replaceChildren(xml, getNodeById("def:"++defId))
}

fun formatDef (def) client {

{stringToXml (def.word) }
{stringToXml (def.meaning) }

}

fun format (defs) client {
<#>
<h3>Click a definition to edit it</h3>
for (var def <- defs)
{formatDef (def) }
</#>
}

fun addForm(handler) client {
<form l:onsubmit="{handler!NewDef ((word=w, meaning=m)) }">
<table>
<tr><td>Word:</td><td>
<input type="text" l:name="w"/></td></tr>
<tr><td>Meaning:</td><td>
<textarea l:name="m" rows="5" cols="80"/></td></tr>
<tr><td><button type="submit">Add</button></td></tr>
</table>
</form>

}

var handler = spawn {
fun receiver(s) {
receive {
case Suggest(s) —-> suggest(s); receiver(s)
case NewDef (def) ->
newDef (def) ;
replaceChildren(addForm(self()), getNodeById("add"));
suggest (s); receiver(s)
}
}
receiver("")

}i

Fig. 4. Dictionary suggest in Links (2)

<html>
<head>
<style>.def {{ color:blue }}</style>
<title>Dictionary suggest</title>
</head>
<body>
<hl>Dictionary suggest</hl>
<h3>Search for definitions</h3>
<form l:onkeyup="{handler! Suggest(s)}">
<input type="text" l:name="s" autocomplete="off"/>
</form>
<div id="suggestions"/>
<h3>New definition</h3>
<div id="add">{addForm(handler) }</div>
</body>
</html>

Fig. 5. Dictionary suggest in Links (3)

version, over 36 trials with various prefixes, total response time measured on average
649ms with a standard deviation of 199ms; subtracting the time spent performing the
database query in each trial, the average time taken was 297ms with a standard devia-
tion of 54ms. Given that no effort has been spent trying to optimize the Links system,
this seems to indicate acceptable performance at this stage.

The code for the application is shown in Figures ??-??; following is a short walk-
through of the code. On each keystroke, a Suggest message containing the current
contents of the text field is sent to the handIer process. The handler process passes
the text content to the function suggest. This function calls completions, which
executes on the server, to find the first ten words with the given prefix, and format
(executing on the client) to format the list returned. Doing the server interaction in a
separate handler process allows the user interaction to remain responsive, even while
looking up suggestions.

The rest of the code is concerned with modifying the database. A form for adding
definitions is created by the function addForm. Clicking ‘Add’ sends a NewDe f mes-
sage to the handler process containing a new definition. The handler process calls
newDef to add the definition, then resets the form and updates the list of suggestions
(in case the new definition appears in the current list of suggestions).

Clicking on a definition invokes the function editDef, which calls the function
redraw in order to replace the definition with a form for editing it. Clicking ‘Cancel’
reverses this operation. Clicking ‘Update’ or ‘Delete’ performs the corresponding mod-
ification to the definition by calling updateDef or deleteDef on the server, and
then updates the list of suggestions by calling the function redraw on the client.

Having sketched the basic structure of the example, we now describe several of the
key features of Links, illustrating them by our example code. The features we cover

are syntax, types, XML, regular expressions, interaction, list comprehensions, database
access and update, concurrency, and partitioning the program onto client and server.

The core of Links is a fairly standard functional programming language with Hindley-
Milner type inference. One missing feature is exception handling, which we plan to add
in a future version.

Syntax. The syntax of Links resembles that of JavaScript. This decision was made not
because we are fond of this syntax, but because we believe it will be familiar to our
target audience. Low-level syntactic details become a matter of habit that can be hard
to change: we conjecture that using the familiar f (x, y) in place of the unfamiliar
£ x y will significantly lower the barrier to entry of functional programming.

One difference from JavaScript syntax is that we do not use the keyword return,
which is too heavy to support a functional style. Instead, we indicate return values subtly
(perhaps too subtly), by omitting the trailing semicolon. The type checker indicates an
error if a semicolon appears after an expression that returns any value other than the
unit value ().

Types. Links uses Hindley-Milner type inference with row variables [?]. As basic types
Links supports integers, floats, characters, booleans, lists, functions, records, and vari-
ants.

A list is written [e1, . .., ex], and a list type is written [A].

A lambda abstraction is written fun (x1, ..., x;) {e}, and a function type is
written (41, ...,Ag) —> B.

A record is written (fi=ei, ..., fxy=ex), and a record type is written
(f1:A1, ..., fx:A; | r), where r is an optional row variable. Field names for
records begin with a lower-case letter.

— A variant is written F;(e;) and a variant type is written
[|F1:41, ..., Fr:Ar | r|]. Field names for variants begin with an upper-
case letter.

Strings are simply lists of characters, and tuples are records with natural number labels.
Apart from the table declaration in Figure ??, none of the examples in the paper ex-
plicitly mention types. This is partly because type inference renders type annotations
unnecessary and partly to save space. Nevertheless, it should be stressed that all of the
examples are type-checked statically, and static typing is an essential part of Links.

Links currently does not support any form of overloading; we expect to support
overloading in future using a simplified form of type classes. As with regular expression
types, this was left to the future because it is well understood from other research efforts.
In particular, the WASH and iData systems make effective use of type classes to support
generic libraries [?,?].

XML. Links includes special syntax for constructing and manipulating XML data.
XML data is written in ordinary XML notation, using curly braces to indicate embed-
ded code. Embedded code may occur either in attributes or in the body of an element.
The Links notation is similar to that used in XQuery, and has similar advantages. In

particular, it is easy to paste XML boilerplate into Links code. The parser begins pars-
ing XML when a < is immediately followed by a legal tag name; a space must always
follow < when it is used as a comparison operator; legal XML does not permit a space
after the < that opens a tag. Links also supports syntactic sugar <#> ... </#> for
specifying an XML forest literal as in the function format in Figure 2?.

The client maintains a data structure representing the current document to display,
called the Document Object Model, or DOM for short. Often this structure is repre-
sented in some form of HTML, such as XHTML, the dialect of XML corresponding to
HTML. Links provides library functions to access and modify the DOM, based on the
similar operations specified by the W3C DOM standard. Links supports two types for
manipulating XML: DomNode is a mutable reference (similar to a ref type in ML),
while Xm1I is an immutable list of trees. There is an operation that converts the former to
the latter by making a deep copy of the tree rooted at the node, returning it in a singleton
list. We expect eventually to support regular expression types for XML that refine each
of these two types, and to support a notation like XPath for manipulating trees, but as
these points are well understood (but a lot of work to implement) they are not a current
priority.

Regular expressions. Matching a string against a regular expression is written e ~ / r/
where r is a regular expression. Curly braces may be used to interpolate a string into a
regular expression, so for example / { s} ./ matches any string that begins with the
value bound to the variable s.

Interaction. The Links code specifies display of an XML document, the crucial part of
which is the following:

<form l:onkeyup="{handler!Suggest(s)}">

<input type="text" l:name="s" autocomplete="off"/>

</form>

<div id="suggestions"/>
The 1 :name attribute specifies that the string typed into the field should be bound to a
string variable s.

The attributes 1 :name and 1:onkeyup are special. The attribue 1:onkeyup
is followed by Links code in curly braces that is not immediately evaluated, but is
evaluated whenever a key is released while typing in the form. (Normally, including
curly braces in XML attributes, as elsewhere in XML, causes the Links code inside the
braces to be evaluated and its value to be spliced into the XML.) The 1 : name attribute
on an input field must contain a Links variable name, and that variable is bound to the
contents of the input field.

The attributes that Links treats specially are 1:name and all the attributes con-
nected with events: 1 : onchange, 1 :onsubmit, 1:onkeyup, 1:onmousemove,
and so on. These attributes are prefixed with 1:, using the usual XML notation for
namespaces; in effect, 1 denotes a special Links namespace.

The scope of variables bound by 1:name is the Links code that appears in the
attributes connected with events. Links static checking ensures that a static error is
raised if a name is used outside of its scope; this guarantees that the names mentioned

on the form connect properly to the names referred to by the application logic. In this,
Links resembles MAWL and Jwig, and differs from PLT Scheme or PHP.

Our experience has shown that this style of interaction does not necessarily scale
well, and it may be preferable to use a library of higher-order forms as developed in
WASH or iData. We return to this point in Section 2?.

List comprehensions. The Links code calls the function suggest each time a key
is released. This in turn calls completions to find the first ten completions of the
prefix, and format to format the results as HTML for display. Both completions
and format use for loops, in the former case also involving where and orderby
clauses. These constructs correspond to what is written as a list comprehension in lan-
guages such as Haskell or Python. Each comprehension is equivalent to an ordinary
expression using standard library functions, we give three examples, where the com-
prehension is on the left and its translation is on the right.

for (var x <- el) concatMap (fun (x) {e2},el)

ez

for (var x <- el) concatMap (

where (e2) fun (x) {if (e2) e3 else []},
e3 el)

for (var x <- el) concatMap (

orderby (e2) fun (x) {e3},
e3 orderBy (fun (x) {e2},el))

Here concatMap (£, xs) applies function f to each element in list xs and concate-
nates the results, and orderBy (£, xs) sorts the list xs so that it is in ascending order
after £ is applied to each element. The orderby notation is conceptually easier for the
user (since there is no need to repeat the bound variables) and technically easier for the
compiler (because it is closer to the SQL notation that we compile into, as discussed
in the next section; indeed, currently orderby clauses only work reliably in code that
compiles into SQL, because the absence of overloading means we have not yet imple-
mented comparison on arbitrary types in the client or server).

Database. Links provides facilities to query and update SQL databases, where database
tables are viewed as lists of records. We hope to provide similar facilities for XQuery
databases in the future.

Links provides a database expression that denotes a connection to a database,
and a table expression that denotes a table within a database. A database is specified
by name (and optional configuration data, which is usually read from a configuration
file), and a table is specified by the table name, the type signature of a row in the table,
and the database containing the table.

The type of a table is distinct from the type of its list of records, since tables
(unlike lists) may be updated. The coercion operation asList takes a table into the
corresponding list, and for (var x<——el) e2 (with a long arrow) is equivalent to
for (var x<-asList (el)) e2 (with an ordinary arrow).

In the following example, there is a table of words, where each row contains three
string fields: the word itself, its type (noun, verb, and so on), and its meaning (defini-
tion). Typically, one expresses queries using the Links constructs such as for, where,
and orderby, and functions on lists such as take and drop. The Links compiler is
designed to convert these into appropriate SQL queries over the relevant tables when-
ever possible. For example, the expression

take (10, for (var def <-- defsTable)

where (def.word ~ /s.*/) orderby (def.word)
[def])
compiles into the equivalent SQL statement

SELECT def.meaning AS meaning, def.word AS word

FROM definitions AS def

WHERE def.word LIKE ' {s}%’

ORDER BY def.word ASC

LIMIT 10 OFFSET 0
This form of compilation was pioneered in systems such as Kleisli [?,?], and is also
central to Microsoft’s new Language Integrated Query (LINQ) for .NET [?]. A related
approach, based on abstract interpretation rather than program transformation, is de-
scribed by Wiederman and Cook [?].

Note that the match operator ~ on regular expressions in Links is in this case com-
piled into the LIKE operator of SQL, and that the call to take in Links is compiled
into LIMIT and OFFSET clauses in SQL. At run time, the phrase { s} in the SQL is
replaced by the string contained in the variable s, including escaping of special charac-
ters where necessary. Links also contains statements to update, delete from, and insert
into a database table, closely modeled on the same statements in SQL.

The LIMIT and OFFSET clauses are not part of the SQL standard, but are available
in PostgreSQL, MySQL, and SQLite, the three targets currently supported by Links.
For non-standard features such as this, Links can generate different code for different
targets; for instance, it generates different variants of INSERT for PostgreSQL and
MySQL.

Section ?? presents a subset of Links that is guaranteed to compile into SQL queries.

Concurrency. Links allows one to spawn new processes. The expression spawn { e}
creates a new process and returns a fresh process identifier, the primitive self () re-
turns the identifier of the current process, the command el ! e2 sends message €2 to
the process identified by e 1, and the expression
receive {
case pl —> el

case pn —-> en

}
extracts the next message sent to the current process (or waits if there is no message),
and executes the first case where the pattern matches the message. (Unlike Erlang, it is
an error if no case matches, which fits better with our discipline of static typing.)

By convention, the messages sent to a process belong to a variant type. Event han-
dlers are expected to execute quickly, so we follow a convention that each handler ei-
ther sends a message or spawns a fresh process. For instance, in the Dictionary Suggest

application, each event handler sends a message to a separate handler process that is
responsible for finding and displaying the completions of the current prefix. This puts
any delay resulting from the database lookup into a separate process, so any keystroke
will be echoed immediately. Furthermore, the messages received by the handler process
are processed sequentially, ensuring that the updates to the DOM happen in the correct
order.

As well as any new processes spawned by the user, there is one distinguished pro-
cess: the main process. The top-level program and all event handlers are run in the main
process. Having all event handlers run in a single process allows us to guarantee that
events are processed in the order in which they are received.

Client-server. The keyword server in the definition of completions causes in-
vocations of that function to be evaluated on the server rather than the client, which is
required because the database cannot be accessed directly from the client.

When the Dictionary Suggest application is invoked, the server does nothing except
to transmit the Links code (compiled into JavaScript) to the client. If the user presses
and releases a key then the suggest function will continue to run on the client as
its definition is annotated with the keyword client. The client runs autonomously
until completions is called, at which point the XMLHt t pRequest primitive of
JavaScript is used to transmit the arguments to the server and creates a new process on
the server to evaluate the call. No server resources are required until completionsis
called. This contrasts with Java Servlets, which keep a process running on the server at
all times, or with PLT Scheme, which keeps a continuation cached on the server.

Location annotations server and client are only allowed on top-level function
definitions. If a top-level function definition does not have a location annotation then it
will be compiled for both the client and the server. A location annotation should be read
as “this function must be run in the specified location”. The implementation strategy for
client-server communication is discussed further in Section ??.

2.2 Draggable list

The draggable list application demonstrates the use of the concurrency primitives in
Links to manage the state of an interactive GUI component. It displays an itemized list
on the screen. The user may click on any item in the list and drag it to another location
in the list (see Figure ??).

The code for the draggable list is shown in Figure ??. The example exploits Links’
ability to run concurrent processes in the client. Each draggable list is monitored by a
separate process.

For each significant event on an item in the list (mouse up, mouse down, mouse out)
there is a bit of code that sends a message to the right process, indicating the event. The
process itself is coded as two mutually recursive functions, corresponding to two states.
The process starts in the waiting state; when the mouse is depressed it changes to the
dragging state; and when the mouse is released it reverts to the waiting state. When the
mouse is moved over an adjacent item while in the dragging state, the dragged item and
the adjacent item are swapped.

Great Bears Great Bears

|Pooh ‘ ¢ | Paddington ‘
¢ | Paddington ‘ & |Rupert ‘
& |Rupert ‘ e | Pooh ‘
e |Edward ‘ e Edward ‘

Fig. 6. Draggable list: before and after dragging

Both functions take, as parameter, the DOM 1id of the draggable-list element, thus
they know what part of the DOM they control. The dragging function takes an addi-
tional parameter, designating the particular item that is being dragged. Both functions
are written in tail recursive style, each one calling either itself (to remain in that state)
or the other (to change state). This style of coding state for a process was taken from
Erlang.

In this simple application, the state of the list can be recovered just by examining
the text items in the list. In a more sophisticated application, one might wish to add
another parameter representing the abstract contents of the list, which might be distinct
from the items that appear in the display.

Observe that the code allows multiple lists to coexist independently, each monitored
by its own process.

2.3 Progress bar

The progress bar application demonstrates symmetric client and server calls. (Note
that unlike standard Ajax frameworks, in Links client code may call server code and
vice-versa, equally easily.) Here some computation is performed on the server, and the
progress of this computation is demonstrated with a progress bar (see Figure ??). When
the computation is completed, the answer is displayed (see Figure 2?).

The code for the progress bar application is shown in Figure ??. In this case, the
computation performed on the server is uninteresting, simply counting up to the number
typed by the user. In a real application the actual computation chosen might be more
interesting.

Periodically, the function computat ion (running on the server) invokes the func-
tion showProgress (running on the client) to update the display to indicate progress.
When this happens, the state of the computation on the server is pickled and transmitted
to the client, exploiting continuation-passing style. The client is passed just the name
of a function to call, its arguments, and an object representing the server-side contin-
uation to be invoked when the client call is finished. Note that no state whatsoever is
maintained on the server when computation is moved to the client. The implementation
is discussed in more detail in Section ??.

fun waiting(id) |
receive {

case MouseDown (elem) —->
if (isElementNode (elem)
&& (parentNode (elem) == getNodeById(id)))

dragging(id, elem)
else waiting(id)
case MouseUp -> waiting(id)
case MouseOQut (newElem) -> waiting(id)
}
}

fun dragging(id, elem) {
receive {

case MouseUp -> waiting(id)
case MouseDown (elem) >
if (isElementNode (elem)
&& (parentNode (elem) == getNodeById(id)))

dragging(id, elem)
case MouseOut (toElem) —>
if (isElementNode (toElem)
&& (parentNode (elem) == getNodeById(id)))
{swapNodes (elem, toElem); dragging(id,elem)}
else dragging(id, elem)

fun draggablelList (id,items) client {

var dragger = spawn { waiting(id) };

<ul id="{id}"
l:onmouseup="{dragger!MouseUp}"
1:onmouseuppage="{dragger! MouseUp}"
1l:onmousedown="{dragger!MouseDown (getTarget (event)) }"
l:onmouseout="{dragger!MouseOut (getToElement (event)) }">

{ for (var item <- items) { item }</1i> }

}

<html><body>
<hl>Draggable lists</hl>
<h2>Great Bears</h2>
{
draggablelist ("bears",
["Pooh", "Paddington", "Rupert", "Edward"])
}
</body></html>

Fig. 7. Draggable lists in Links

|155 Submit Query |

Fig. 8. Progress bar

|155 Submit Query |

Done.

Fig. 9. Progress bar displaying the final answer

One advantage of this design is that if the client quits at some point during the
computation (either by surfing to another page, terminating the browser, or taking a
hammer to the hardware), then no further work will be required of the server.

On the other hand, the middle of an intensive computation may not be the best time
to pickle the computation and ship it elsewhere. A more sophisticated design would
asynchronously notify the client while continuing to run on the server, terminating the
computation if the client does not respond to such pings after a reasonable interval. This
is not possible currently, because the design of Links deliberately limits the ways in
which the server can communicate with the client, in order to guarantee that long-term
session state is maintained on the client rather than the server. This is not appropriate in
all circumstances, and future work will need to consider a more general design.

3 Client-server computing

A Links program can be seen as a distributed program that executes across two loca-
tions: a client (browser) and a server. The programmer can optionally annotate a func-
tion definition to indicate where it should run. As mentioned before, code on the client
can invoke server code, and vice-versa.

This symmetry is implemented on top of the asymmetric mechanisms offered by
web browsers and servers. Current standards only permit the browser to make a direct
request to the server. The server can return a value to the browser when done, but there
is no provision for the server to invoke a function on the browser directly—so imple-
menting our symmetric calls requires some craft.

Our implementation is also scalable, in the sense that session state, when it is cap-
tured automatically, is preserved in the client, thus requiring no server resources except
when the server is actively working. This is significant since server resources are at a
premium in the web environment.

We achieve this by using a variation of continuation-passing style, which we call
resumption-passing style. It is now common on the web to use continuations to “invert

fun compute (count, total) server {

if (count < total) {

showProgress (count, total);

compute (count+l, total)

} else "done counting to " ++ intToString(total)
}

fun showProgress(count, total) client {
var percent =
100.0 *. intToFloat (count) /. intToFloat (total);
replaceNode (
<div id="bar"
style="width:floatToString (percent) %;
background-color: black">|</div>,
getNodeById("bar")
)
}

fun showAnswer (answer) client ({
domReplaceNode (
<div id="bar">{stringToXml (answer) }</div>
getNodeById("bar")
)i
}

<html>
<body id="body">
<form l:onsubmit=
"{showAnswer (compute (0, stringToInt(n)))}">
<input type="text" l:name="n"/>
<input type="submit"/>
</form>
<div id="bar"/>
</body>
</html>

Fig. 10. Progress bar in Links

back the inversion of control” [?], permitting a server process to retain control after
sending a form to the client. But Links permits a server to retain control after invoking
an arbitrary function on the client.

Figure ?? shows how the call/return style of programming offered by Links differs
from the standard request/response style, and how we use request/response style to
emulate the call/return style. The left-hand diagram shows a sequence of calls between
functions annotated with “client” and ““server.” The solid line indicates the active thread
of control as it descends into these calls, while the dashed line indicates a stack frame
which is waiting for a function to return. In this example, main is a client function

main f g Client Server

Call to f (server)

{Call }

{ Call to g (client) | {Call g, k}

{Continue r, k}

Return r from g

Return s from f

Source language: Implementation:
call/return style request/response style

Fig. 11. Semantic behaviour of client/server annotations

which calls a server function £ which in turn calls a client function g. The semantics of
this call and return pattern are familiar to every programmer.

The right-hand diagram shows the same series of calls as they actually occur at
runtime in our implementation. The dashed line here indicates that some local storage
is being used as part of this computation. During the time when g has been invoked but
has not yet returned a value, the server stores nothing locally, even though the language
provides an illusion that £ is “still waiting” on the server. All of the server’s state is
encapsulated in the value k, which it passed to the client with its call.

To accomplish this, the program is compiled to two targets, one for each location,
and begins running at the client. In this compilation step, server-annotated code is re-
placed on the client by a remote procedure call to the server. This RPC call makes an
HTTP request indicating the server function and its arguments. The client-side thread
is effectively suspended while the server function executes.

Likewise, on the server side, a client function is replaced by a stub. This time, how-
ever, the stub will not make a direct call to the client, since in general web browsers are
not addressable by outside agents. However, since the server is always working on be-
half of a client request, we have a channel on which to communicate. So the stub simply
gives an HTTP response indicating the server-to-client call, along with a representation
of the server’s continuation, to be resumed when the server-to-client call is complete.
Upon returning in this way, all of the state of the Links program is present at the client,
so the server need not store anything more.

When the client has completed the server-to-client call, it initiates a new request
to the server, passing the result and the server continuation. The server resumes its
computation by applying the continuation.

3.1 Client-side Concurrency

A Links program is concurrent: many threads can run simultaneously within the client
or within the server, communicating only through message queues.! We implement con-
currency in the client, even though JavaScript does not offer any concurrency primitives.
To accomplish this, we use the following techniques:

compiling to continuation-passing style,

inserting explicit context-switch instructions,

placing any server calls asynchronously (with XMLHt t pRequest),

eliminating the stack between context switches using either set Timeout or a
trampoline.

Producing JavaScript code in CPS allows us to reify each process’s control state, but
since JavaScript does not implement tail-call elimination, there is a risk of overflowing
the stack.

To manage the stack and to schedule threads, the compiler wraps every function
application and every continuation application in calls to a special “yield” function
which does the dirty work. Most calls to __yield are simply no-ops, but after every
_yieldGranularity calls, it will collapse the JavaScript stack and may schedule a
new thread to run.

A quick aside about the concurrency semantics: Normally, threads can pre-empt one
another at any time. However, inside an event handler, we disallow pre-emption—this
allows events to be handled in the order they arrive, for otherwise one event handler
might be pre-empted by a later event even before the earlier handler noted the event’s
occurrence! In order to prevent event handlers from blocking concurrency, we recom-
mend that they be short-lived (ideally they just send a message or spawn a new process).

With this in mind, we use two techniques for managing the stack, one of which also
allows a waiting thread to run; we call these the “timeout technique” and the “exception
trampoline.” The latter does not transfer control to other threads and is used during
synchronous execution, as with event handlers.

To see these techniques, refer to the implementation of __yie1d for function appli-
cation? in Figure ??. In detail, the two techniques work as follows:

— In the timeout technique, the thread relinquishes control by returning completely to
the top level (that is, to the browser), but only after calling the built-in set Timeout
function, which adds a given function to a pool of thunks, each of which will
be invoked no sooner than the given interval. Since the JavaScript code is all in
continuation-passing style, returning from any function returns from the whole call
stack, thus emptying it—but the timeout thunk has captured the continuation of that
thread, so nothing is lost. The thunk we use simply manages the “process id” global
and then calls £ (a, k) to continue the thread.

! Note that presently there is no message-based communication between client and server

% The “yield” function for continuation application is the same except it takes as arguments
continuation k and value a, and the function applications £ (a, k) are replaced with con-
tinuation applications k (&) .

Besides giving other timeout thunks the chance to run, returning to the top level
allows any event handlers or any XMLHt t pRequest callbacks to run.

The _sched_pause is a lower bound on how long to wait before allowing this
callback to run. Ideally this value should be zero, so there would be no delay be-
tween the moment a thread yields and the moment it is eligible to run again. But
for some browsers a__sched_pause of zero runs the callback immediately, rather
than putting it in the pool, thus blocking other threads.

In the “exception trampoline” method, an exception is thrown containing the cur-
rent continuation. Throwing the exception unwinds the stack; the trampoline then
catches the exception and invokes the continuation. The trampoline code is shown
in Figure ??.

Unsurprisingly, preliminary tests indicate that the output of the CPS-translating

compiler is slower than comparable direct-style code. The performance penalty appears
to be significant but not disastrous: the total run-time of compute-intensive programs
we measured was within an order of magnitude of equivalent hand-written JavaScript
versions.

function _yield(f, a, k) {
++_yieldCount;
if ((_yieldCount % _yieldGranularity) == 0) {
if (!_handlingEvent) {
var current_pid = _current_pid;
setTimeout ((fFunction () {
_current_pid = current_pid;
f(a, k)}),
_sched_pause) ;
}
else {
throw new _Continuation(function () { f(a,k) });

}
else {
return f(a, k);

Fig. 12. The yield function

Client-to-server calls are implemented using the asynchronous mode of the function

XMLHt tpRequest, to which we pass a callback function that invokes the continua-
tion of the calling process. Using the asynchronous mode allows threads to run via
setTimeout or triggering user-event handlers.

function _Continuation(v) { this.v = v }

{

function _wrapEventHandler (handler)

return function (event) {
var active_pid = _current_pid;

_current_pid = _mainPid;
_handlingEvent = true;
var cont = function () { handler(event) }
for (;;) |
try {
cont () ;
_handlingEvent = false;
_current_pid = active_pid;
return;
}
catch (e) {
if (e instanceof _Continuation) {
cont = e.v;
continue;
}
else {
_handlingEvent = false;
_current_pid = active_pid;
throw e;

Fig. 13. The event handler trampoline

3.2 Related work: continuations for web programming

The idea of using continuations as a language-level technique to structure web programs
has been discussed in the literature [?,?] and used in several web frameworks (such as
Seaside, Borges, PLT Scheme, RIFE and Jetty) and applications, such as ViaWeb’s e-
commerce application [?], which became Yahoo! Stores. Most these take advantage of
a call/cc primitive in the source language, although some implement a continuation-
like object in other ways. Each of these systems creates URLs which correspond to
continuation objects. The most common technique for establishing this correspondence
is to store the continuation in memory, indexed by a unique identifier which is included
as part of the URL.

Relying on in-memory tables makes such a system vulnerable to system failures
and difficult to distribute across multiple machines. Whether stored in memory or in a
database, the continuations can require a lot of storage. Since URLs can live long in
bookmarks, emails, and other media, it is impossible to predict how long a continuation
should be retained. Most of the above frameworks destroy a continuation after a set
period of time. Even with a modest lifetime, the storage cost can be quite high, as each
request may generate many continuations and there may be many simultaneous users.

Our approach differs from these implementations by following the approach de-
scribed by the PLT Scheme team [?]. Rather than storing a continuation object at the
server and referring to it by ID, we serialize continuations (or at least, their “data”
portions), embedding them completely in URLs and hidden form variables. The result-
ing representation includes only the code-pointers and free-variable bindings that are
needed in the future of the computation.

We have not yet addressed the issue of security. Security is vital. Our current imple-
mentation completely exposes the state of the application to the client. A better system
needs to cryptographically encode any sensitive data when it is present on the client.

4 Query compilation

A subset of Links expressions compiles precisely to a subset of SQL expressions. Fig-
ure ?? gives the grammar of the SQL-compilable subset of Links expressions and Fig-
ure ?? gives the grammar for the subset of SQL to which we compile.

All terms are identified up to a-conversion (that is, up to renaming of bound vari-
ables, field names and table aliases). We allow free variables in queries, though they
are not strictly allowed in SQL: values for these variables will be supplied either at
compile time, during query rewriting, or else at runtime. We use vector notation v to
mean vy , ..., Vg, where 1 < k and abuse vector notation in the obvious way in
order to denote tuples, record patterns and lists of tables. For uniformity, we write an
empty ‘from’ clause as £rom e. In standard SQL the clause would be omitted alto-
gether. We assume a single database db, and write table t with (fi, ..., fy)
for asList (table t where (f1:41,...,fr:A;) from db).

Any expression e can be transformed into an equivalent SQL query by repeated ap-
plication of the rewrite rules given in Figure ??. To give the rewriting process sufficient
freedom, we extend the non-terminal s from Figure ?? to give ourselves a working
grammar.

(expressions) e ::= take(n, e) | drop(n, e) | s

(simple expressions) s = for (pat <- s) s

| let x = b in s

| where (b) s ~

| talgle t with

| [(b)]
(basic expressions) b :1:= b1 op b2

| not b

| x

| 1it

| z.f
(patterns) pat 1:= z | (f=X)
(operators) op ::= 1like | > | = | < | <> | and | or
(literal values) 1lit ::= true | false | string-literal | n
(finite integers) i, m, n
(field names) £, g
(variables) X Y
(record variables) z

t

(table names)

Fig. 14. Grammar of an SQL-compilable subset of Links.

(queries) g ::= select Q limit ninf offset n
(query bodies) Q ::= cols from tables where c
(column lists) cols ::= C
(table lists) tables ::= t as a | o
(SQL expressions) c, d::=copd

| not ¢

| x

| 1it

| a.f
(integers) ninf ::= n | 00

(table aliases)

Fig. 15. The SQL grammar that results from query compilation.

TABLE B
table t with £
— (ais fresh)

select a.f from t as a where true limit oo offset 0

LET

let x = b in s — s[b/x]
TuPLE -

[(b)] — select b from e where true limit oo offset 0
JOIN

for ((f=X) <-
select ¢; from t; as &; where d; limit oo offset 0)
select Gy from to as 4z where do limit oo offset O
— (&1 and as are disjoint)
select Cy[C1/Xx] from t; as aj, ta as as
where d; and dy[C1/X] limit oo offset 0

WHERE
where (b) (select ¢ from t as & where d limit m offset n)
—

select ¢ from t as & where d and b limit m offset n

RECORD
for (z <- select C from t as 3 where d limit m offset n) s
— (X not free in s)
for ((f=X) <- select C from t as a
where d limit m offset n) s[X/z.f]
TAKE
take(i, select QO limit m offset n)
.

select O limit min(m, i) offset n

DRroP
drop(i, select O limit m offset n)

—
select QO limit m-i offset nti
DROP
drop (i, select Q limit oo offset n)
—

select QO limit oo offset n+i

Fig. 16. Database rewrite rules

s 1:= ... | g
We write s[b/x] for the substitution of b for x in s. Again we abuse the vector
notation in the obvious way in order to denote simultaneous pointwise substitution.
Note that min is a meta language (i.e. compiler) operation that returns the minimum of
two integers, and is not part of the target language.

Proposition 1. The database rewrite rules are strongly normalising and confluent.
Proof. Define the size |e| of an expression e as follows.

|take(n, s)|=1+]s]
|drop(n, s)|=1+]s|
|for (x <- s1) s2|=2+|s1|+|s2|
[for ((f = %) <- s1) s2|=1+]s1|+]s2|
|let x = b in s|=1+]s|
lwhere (b) s|=1+]s]|
table t| =1
[l]]=1

Each rewrite rule strictly reduces the size of an expression, thus the rules are strongly
normalising. The rewrite rules are orthogonal and hence weakly confluent. Confluence
follows as a direct consequence of weak confluence and strong normalisation.

5 Statically typed message passing

Concurrency in Links is based on processes that send messages to mailboxes. Each
process can read from a single mailbox which it owns. The message passing model is
inspired by Erlang [?], but unlike in Erlang, mailboxes in Links are statically typed. To
achieve this, we add a special mailbox type to the typing context, and annotate function
types with the type of their mailbox.

We here present a tiny core calculus to capture the essence of process and mes-
sage typing in Links. There is nothing particularly difficult here, but it does capture
the essence of how our type inference works. The simple description of our core has
already proven useful to researchers at MSR Cambridge working with Links.

We let A, B, C, D range over types, s, t, u range over terms, and x range over vari-
ables. A type is either the empty type 0; unit type 1; a process type P(A), for a process
that accepts messages of type A; or a function type A —¢ B, for a function with argu-
ment of type A, result of type B, and that may accept messages of type C' when evalu-
ated. Links also supports record types and variant types (using row typing), but as those
are standard we don’t describe them here. Typically, a process will receive messages
belonging to a variant type, and we use the empty variant type (which is isomorphic to
the empty type 0) to assert that a function does not receive messages.

A typing judgement has the form I'; C' - ¢ : A, where I is a typing context pairing
variables with types, C' is the type of messages that may be accepted during execution
of the term, ¢ is the term, and A is the type of the term.

The typing rules are shown in Figure ??. The rules for variables and the constant
of unit type are standard. The type of a lambda abstraction is labelled with the type
C' of messages that may be received by its body, where the context of the abstraction
may accept messages of an unrelated type D; while in an application, the function must
receive messages of the same type C' as the context in which it is applied.

If ¢ is a term of unit type that receives messages of type C, then spawn ¢ returns a
fresh process identifier of type P(C'), where the context of the spawn may receive mes-
sages of an unrelated type D. The term self returns the process identifier of the current
process, and so has type P(C') when it appears in a context that accepts messages of
type C. If s is a term yielding a process identifier of type P(D) and ¢ is a term of type
D, then send s t is a term of unit type that sends the message ¢ to the process identi-
fied by s; it evaluates in a context that may receive messages of an unrelated type C.
Finally, the term receive returns a value of type C' when it is executed in a context that
may receive messages of type C.

Links syntax differs slightly from the core calculus. The type A —¢ B is written
A —{C}-> B, orjust A —> B when C is unspecified. The core expression self is
written as a function call self (), the core expression send ¢ u is written ¢ ! u, and the
Links expression

receive {

case pl —> el

case pn -> en

}
corresponds to a switch on the value returned by the receive operator. (Recall that by
convention the type of messages sent to a process, i.e. its mailbox type, is a variant
type.)

We give a formal semantics for the typed message-passing calculus via a translation
into A\(fut), Niehren et al’s concurrent extension of call-by-value A-calculus [?]. For our
purposes we need not consider all of the details of A(fut). We just describe the image
of the translation and then rely on previous results [?]. The image of the translation is
simply-typed call-by-value A-calculus extended with the constants of Figure ??.

The expression thread (Ax.u) spawns a new process binding its future to the vari-
able x in w and also returning this future. A future can be thought of as placeholder for
a value that is set to contain a real value once that value becomes known. Futures are
central to A(fut), but not to our translation.

The other constants are used for manipulating asynchronous channels, which can
be used for implementing mailboxes. The constants newChannel, put and get are used
for creating a channel, writing to a channel, and reading from a channel. They are not
built in to A(fut), but are easily implemented in terms of \(fut)-primitives, when \(fut)
is extended with product types. The type of channels is Chan(A)>.

We write I" FUt 4 : A for the \(fut) typing judgement “u has type A in context I".”
The translation on terms and types is given in Figure ??. At the top level a fresh channel
corresponding to the mailbox of the main process is introduced. Thereafter, the transla-

3 In fact Chan(A) is just the type (A — unit) x (unit — A) (i.e. a pair of put and get
functions), but that is not relevant to our presentation.

z:A;Ckz: A r;cr():1

[01"
[«]"
[Az.u]"
[st]"

[1] =

Iz:A;Cru:B I''Crs:A—°B I';CkHt:A
I''DFXzwu:A—¢ B I';Ctst:B
IiCrEt:1

I'; D+ spawn ¢ : P(C) I'; CFself : P(C)

I''Crs:P(D) ItCkHt:D
I'’Chlsendst: 1 I'; C + receive : C

Fig. 17. Statically typed message passing

thread: (A — A) — A

newChannel : unit — Chan(A)
put : Chan(A) — A — unit
get : Chan(A) — unit — A

Fig. 18. Constants for the A(fut) translation

[u] = let ch be newChannel () in [u]"

—0 [spawn u]*" = let ch’ be newChannel () in,
let _ be thread (A_.[u]®") in ch’

-7 / » [[send s t]]ch _ let |IS]]C}L Ht]]Ch
= Az.Ach’.[u] [[receive]]Ch = getch
_ IISIIC}L [[t]]chch ch __

[self]*" = ch

1 [P(A)]=Chan([4]) [A—° B]=[A] — [P(C)] — [B]

Fig. 19. Translation into A(fut)

tion on terms is annotated with the current channel. Unit and variables are just mapped
to themselves. The current mailbox is threaded through functions and applications. The
spawn, send and receive constructs are mapped to thread, put and get, and self is sim-
ply mapped to the channel that corresponds to the current mailbox. The type translation
maps unit to unit, process types to channel types, and function types to function types
with an extra channel argument.

It is straightforward to prove by induction on typing derivations that the transforma-
tion respects typing judgements.

Proposition 2. The transformation [-] respects typing judgements.
riCru:A iff [" let chl°l be newChannel () in [u] " : A

By Proposition ?? and standard results for A(fut) [?], we can be sure that programs that
are well-typed in our message-passing calculus “do not go wrong”.

6 Issues

Links is still at an early stage of development. There are a number of shortcomings in
the current design, which we plan to address. We mention some of them here.

Form abstractions. A flaw in the design of forms is that Links does not support ab-
straction over form components. As described in section ??, form interaction in Links
is specified using the attributes 1 :name, which binds the value of a form field to a
Links variable, and 1 : onsubmit, which contains Links code to be executed when a
form is submitted. Variables bound by 1 : name are in scope within the 1 : onsubmit
attribute of the lexically enclosing form. This design has several shortcomings. Firstly,
it is not possible to abstract over input elements, since all input elements must be lex-
ically contained within the form to which they belong. Secondly, it is not possible to
vary the number of input elements within a form, since each input element is associated
with a Links variable, and the number of variables is fixed at compile time. Thirdly,
form components are not composable: it is not possible to compose input elements to
create new form components which have the same interface as the language-supplied
primitives, since 1 : name is only attachable to input XML literals.

To illustrate these problems, say we wish to construct a date component which we
will use to allow the user to enter a number of dates into a form.

var date =

<#>

month: <input l:name="month"/>
day: <input 1l:name="day"/>
</#>

We would then like to use instances of date in a form elsewhere in the program:
<form l:onsubmit="{e}">
Arrival: {date}
Departure: {date}
</form>

Unfortunately, Links provides no way to refer within the 1 : onsubmit attribute to
the values entered into the date fields, since the input elements are not lexically enclosed
within the form. The only way to write the program is to textually include the date code
within the form, then refer to the individual input elements of each month and day
within e. This violates abstraction in two ways: the component must be defined (twice!)
at the point of use, and the individual elements of the component cannot be concealed
from the client.

If we try to construct a form with a number of fields determined at runtime then we
run into further difficulties:

fun (n) {
<form l:onsubmit="{e}">{
for (var i <- range(n))
Field {i}: <input 1l:name="x"/>
}</form>
}
This code is also problematic: there is no way to refer to the different input fields gen-
erated in the loop, since all have the same name! Such constructs are consequently
disallowed, and Links provides no way to construct forms with dynamically-varying
numbers of fields.

The 1 : name mechanism provides a limited (but clean) way to refer to DOM nodes
that are <input> elements. A related problem is that there is currently no other way
of statically referring to a DOM node, which means we have to resort to calling the
function get NodeById as illustrated in the draggable lists example.

Other systems also suffer from these problems to a greater or lesser degree. In PLT
Scheme [?], composing new forms from old or making forms with a varying number of
fields is possible, but not straightforward. In WASH [?] and iData [?], building forms
that return new types requires declaring instances for those types in particular type
classes, and in WASH a special type constructor needs to be used for forms with a
varying number of fields. It was surprising for us to realize that composability of forms
has received relatively little attention.

We are currently working on a design for light-weight modular form components,
which uses a uniform framework to support form abstraction, varying numbers of form
fields, and a mechanism that allows DOM nodes to be statically bound.

Synchronous messages. As far as we are aware, our mailbox typing scheme for Links
is novel, though the translation into A\(fut) shows that it can be simulated using typed
concurrent languages with support for typed channels.

Links message passing is asynchronous, but often one wants synchronous message
passing, where one sends a message and waits for a result. An example where syn-
chronous message passing is needed is the extension of the draggable lists example to
support reading the content of draggable lists.*

Although Links does not directly support synchronous message passing, it can be
simulated in the same way as in Erlang. In order to send a synchronous message from
process P to process () the following sequence of events must occur:

4Seehttp://groups.inf.ed.ac.uk/links/examples/.

P sends a message (M, P) to @,

P blocks waiting for a reply Reply(N),

on receiving the message (M, P) the process) sends a message Reply(N) to P,
P receives the reply message Reply(N).

However, Erlang is untyped; in Links, the simulation of synchronous messages has the
unfortunate side-effect of polluting the type of process P’s mailbox, to include a dif-
ferent constructor for each distinct type of reply message associated with synchronous
messages sent by P.

Type pollution of this kind makes it hard to structure programs cleanly. We are
considering moving to a different model of concurrency that makes it easier to support
typed synchronous message passing, such as the Join calculus [?], or even removing
explicit concurrency from the language altogether and replacing it with something like
functional reactive programming [?].

Database abstraction. As we showed in Section ??, we can guarantee to compile a
useful fragment of Links into SQL. However, this fragment still lacks many impor-
tant features. We do not yet deal with aggregate functions such as count, sum, and
average, and we only support order by attached to a single loop iterator (rather
than a nest of loop iterators). One can express the equivalent of a group by construct
as a nested loop, but we do not yet translate code into group by when appropriate,
nor yet support any other form of nested queries.

We also do not yet provide adequate support for abstracting over a query. For in-
stance, suppose we try to abstract over the condition in the Dictionary Suggest example.
We can amend the completions function to take a condition encoded as a function
from unit to boolean in place of the prefix.

fun completions(cond) server {

if (s == "") [] else {
take (10, for (wvar def <-- defsTable)
where (cond()) orderby (def.word)
[def])

}

}

Only once the condition is known is it possible to compile this to efficient SQL. The
current compiler produces spectacularly inefficient SQL, which returns the entire dic-
tionary, leaving the Links interpreter to then filter according to the condition and then
take the first 10 elements of the filtered list. To produce adequately efficient code, it is
necessary to inline calls to completions with the given predicate. But our compiler
does not yet perform inlining, and in general inlining can be difficult in the presence of
separate compilation.

Some of the problems outlined above are easy. For instance, we should be able to
support aggregates in the same style that we support t ake and drop; and it is straight-
forward to extend our techniques to support orderby on nested loops. However, other
problems are more challenging; in particular, it is not immediately clear how to extend
the fragment described in Section ?? to support abstraction over predicates usefully.

Microsoft’s Linq addresses all these issues, but does so by (a) requiring the user to
write code that closely resembles SQL and (b) a subtle use of the type system to dis-

tinguish between a procedure that returns a value and a procedure that returns code that
generates that value. It remains an open research problem to determine to what extent
one can support efficient compilation into SQL without introducing separate syntax and
semantics for queries as is done in Ling.

7 Conclusion

We have demonstrated that it is possible to design a single language in which one can
program all three tiers of a web application. This eliminates the usual impedance mis-
match and other problems connected with writing an application distributed across mul-
tiple languages and computers. We have shown that we can support Ajax-style interac-
tion, programming applications such as Dictionary Suggest and draggable lists. The
language compiles to JavaScript to run in the client, and SQL to run on the database.

Ultimately, we would like to grow a user community for Links. This depends on a
number of factors, many of which are not well understood. One important factor seems
to be the availability of good libraries. Good interfaces to other systems may help to
rapidly develop useful functionality. A vexing question here is how to access facilities
of languages that take a mostly imperative view of the world without vitiating the mostly
functional approach taken by Links.

Already, researchers at Microsoft Cambridge and the University of Maryland have
begun projects to add security features to Links; and one paper has been published that
uses a modified version of Links to enhance security [?].

To make Links truly successful will require bringing together researchers and de-
velopers from many localities, many perspectives, and many communities. We would
like to join our efforts with those of others — let us know if you are interested!

References

1. D. L. Atkins, T. Ball, G. Bruns and K. C. Cox. Mawl: A domain-specific language for form-
based services. Software Engineering, 25(3):334 346, 1999.

2. J. Armstrong. Concurrency oriented programming in Erlang. Invited talk, FFG 2003.

3. V.Balat. Ocsigen: typing web interaction with objective Caml Proceedings of the 2006 work-
shop on ML, Portland, Oregon, September 2006.

4. N.Benton, L. Cardelli, C. Fournet. Modern concurrency abstractions for Cf. TOPLAS, 26(5),
2004.

5. N. Benton, A. Kennedy, and C. Russo. Adventures in interoperability: the SML.NET expe-
rience. PPDP, 2004.

6. G. Bierman, E. Meijer, W. Schulte. Programming with rectangles, triangles, and circles. XML
Conference, 2003.

7. P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming with complex
objects and collection types. TCS, 149(1), 1995.

8. R. Burstall, D. MacQueen, and D. Sannella. Hope: An experimental applicative language.
Lisp Conference, 1980.

9. S. El-Ansary, D. Grolaux, P. Van Roy, M. Rafea. Overcoming the multiplicity of languages
and technologies for web-based development. Mozart/Oz Conference, LNCS 3389, 2005.

10. C. Fournet, G. Gonthier. The Join Calculus: a language for distributed mobile programming.

Applied Semantics, LNCS 2395, 2002.

11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

J. Garret. Ajax: a new approach to web applications. 2005.

P. Graham. “Method for client-server communications through a minimal interface.” United
States Patent no. 6,205,469. March 20, 2001.

P. Graham. Beating the averages. 2001.

P. Graunke, R. B. Findler, S. Krishnamurthi, M. Felleisen. Automatically restructuring pro-
grams for the web. ASE, 2001.

P. Graunke, S. Krishnamurthi, S. van der Hoeven, M. Felleisen. Programming the web with
high-level programming languages. ESOP, 2001.

V. Gapeyev, M. Levin, B. Pierce, A. Schmitt. The Xtatic experience. PLAN-X, 2005.
labs.google.com/suggest

Microsoft Corporation. DLing: .NET Language Integrated Query for Relational Data
September 2005

A. Mgller, M. Schwartzbach. The design space of type checkers for XML transformation
languages. ICDT, LNCS 3363, 2005.

J. Niehren, J. Schwinghammer, G. Smolka. A Concurrent Lambda Calculus with Futures.
TCS, 364(3), 2006.

G. Narra. ObjectGraph Dictionary.
http://www.objectgraph.com/dictionary/how.html

M. Odersky et al. An overview of the Scala programming language. Technical report, EPFL
Lausanne, 2004.

R. Plasmeijer and P. Achten. iData For The World Wide Web: Programming Interconnected
‘Web Forms. FLOPS, 2006.

E. Pottier and D. Rémy. The essence of ML type inference. In B. Pierce, editor, Advanced
Topics in Types and Programming Languages, chapter 10, pages 389-489. MIT Press, 2005.
C. Queinnec. Continuations to program web servers. ICFP, 2000.

Christian Queinnec Inverting back the inversion of control or, continuations versus page-
centric programming, SIGPLAN Not., 2003

J. Reynolds. Definitional interpreters for higher-order programming languages. ACM *72:
Proceedings of the ACM annual conference, 1972.

Ruby on Rails.

http://www.rubyonrails.org/

M. Serrano, E. Gallesio, and F. Loitsch. HOP, a language for programming the Web 2.0.
Proceedings of the First Dynamic Languages Symposium, Portland, Oregon, October 2006.
D. Syme. Ff web page.
research.microsoft.com/projects/ilx/fsharp.aspx

P. Thiemann. WASH/CGTI: server-side web scripting with sessions and typed, compositional
forms. PADL, 2002.

J. Trevor, N. Swamy and M. Hicks. Defeating Script Injection Attacks with Browser-
Enforced Embedded Policies. World Wide Web. May 2007

P. Van Roy. Convergence in language design: a case of lightning striking four times in the
same place. FLOPS, 2006.

Z. Wan and P. Hudak. Functional reactive programming from first principles. In PLDI *00:
Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and
implementation, Vancouver, British Columbia, Canada, 2000.

B. Wiederman and W. Cook. Extracting queries by static analysis of transparent persistence.
POPL, 2007.

L. Wong. Kleisli, a functional query system. JFP, 10(1), 2000.

XML Query and XSL Working Groups. XQuery 1.0: An XML Query Language, W3C Work-
ing Draft, 2005.

