
The RPC calculus

Ezra elias kilty Cooper
University of Edinburgh

Philip Wadler
University of Edinburgh

ABSTRACT
Several recent language designs have offered a unified lan-
guage for programming a distributed system, with explicit
notation of locations; we call these “location-aware” lan-
guages. These languages provide constructs allowing the
programmer to control the location (the choice of host, for
example) where a piece of code should run, which can be use-
ful for security or performance reasons. On the other hand,
a central mantra of WWW system engineering prescribes
that web servers should be“stateless”: that no“session state”
should be maintained on behalf of individual clients—that
is, no state that pertains to the particular point of the in-
teraction at which a client program resides. Many imple-
mentations of location-aware languages are not at home on
the web: they hold some kind of client-specific state on the
server. We show how to implement a symmetrical location-
aware language on top of a stateless server.

1. INTRODUCTION
Designing a web server requires thinking carefully about

user state and how to manage it. Unlike a desktop applica-
tion, which deals with one user at a time, or a traditional
networked system, which may handle multiple simultaneous
requests but in a more controlled environment, a modest
web system can expect to deal with tens or hundreds of
thousands of users in a day, each one can have multiple win-
dows open on the site simultaneously—and these users can
disappear at any time without notifying the server. This
makes it infeasible for a web server to maintain state re-
garding a user’s session. The mantra of web programming
is: Get the state out!—get it out of the server and into the
client. An efficient web server will respond to each request
quickly and then forget about it even quicker.

Nonetheless, several recent high-level programming lan-
guage designs [15, 17, 16] allow the programmer the illusion
of a persistent environment encompassing both client and
server; let us call these “location-aware languages.” This al-
lows the programmer to move control back and forth freely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

between client and server, using local resources on either
side as necessary, but still expressing the program in one
language. This paper shows how to implement a location-
aware language in an environment with a stateful client and
a stateless server.

The term stateless server, as it is applied by web engi-
neers, means not that the server has strictly no storage, but
rather that the server should not hold state pertaining to
every thread of control on every one of its clients, which
indeed may terminate without notifying the server. Typi-
cally, web servers do store persistent data—in a database, for
example—but this data represents lasting, important infor-
mation, rather than the ephemeral data supporting the im-
mediate state of a particular client process. The challenge,
then, is to support a location-aware language, where control
state is maintained as transparently as in any programming
language, even though the stateless-server substrate requires
explicitly managing this state.

Our technique involves three essential steps: defunction-
alization à la Reynolds, CPS translation, and a trampo-
line [10] for tunnelling server-to-client requests within server
responses.

CPS translation and defunctionalization were used by Mat-
thews et al. [13] for a similar end, that of writing web in-
teractions in direct style, rather than CPS. We adapt these
techniques, adding a trampoline to the toolbox, to support
RPC calls in a location-aware language.

A version of this feature is built into the Links language [5].
In the current version, only calls to top-level functions can
pass control between client and server. Here we show how
to relax the top-level restriction. In particular, the current,
limited version requires just a CPS translation and a tram-
poline; defunctionalization is needed in implementing nested
remote-function definitions.

The only form of state modeled by this calculus is the con-
trol state, or call stack. This is a very pure view of state; but
the techniques used here could be expanded to handle other
forms, as discussed in Section 6. In fact, in the Links lan-
guage, there is no other form of state, although its utility is
recovered through the use of multiple concurrent processes,
as championed by the Erlang community. In particular, mu-
table cells can be simulated in such a language by a process
that holds data in its local variables.

This paper.
We present a simple higher-order λ-calculus enriched with

location annotations, allowing the programmer to indicate
the location where a fragment of code should execute. The

Syntax

constants c
variables x
locations a, b ::= c | s

terms L, M, N ::= LM | V
values V, W ::= λax.N | x | c

evaluation contexts E ::= [] | V E | EN

Semantics

M ⇓a V

V ⇓a V (Value)

L ⇓a λbx.N M ⇓a W N{W/x} ⇓b V

LM ⇓a V
(Beta)

Figure 1: The RPC calculus, λrpc.

semantics of this calculus indicates where each computation
step is allowed to take place. This can be seen as a semantics
of a language with Remote Procedure Call (RPC) features
built in.

We then give a translation from this calculus to a first-
order calculus that models an asymmetrical client–server
environment, and show that the translation preserves the
locative semantics of the source calculus.

2. THE RPC CALCULUS
The RPC calculus, λrpc, is defined in Figure 1. It is like an

ordinary call-by-value calculus, but with location tags on λ-
abstractions, denoting the location where the function body
executes. We use the location set {c, s} because we are inter-
ested in the client-server setting, but the calculus would be
undisturbed by any other choice of location set. Constants
are assumed to be universal, that is, all locations treat them
the same way, and they contain no location annotations.

The semantics is defined by a big-step reduction relation
M ⇓a V , which is read, “the term M , evaluated at location
a, results in value V .” The reader can verify that the lexical
body N of an a-annotated abstraction λax.N is only ever
evaluated at location a, and thus the location annotations
are honored by the semantics. During evaluation, however,
that body may invoke other functions that evaluate at other
locations. We write N{V/x} for the capture-avoiding sub-
stitution of a value V for the variable x in the term N .

The semantics is equipped with a (partial) function δ
which gives the action δ(a, c, W) at location a of a primi-
tive function c on argument W . When δ is undefined, such
an application is stuck. We do not require that the con-
stants agree with themselves across locations—they might
produce different values for the same arguments at different
locations. This models the way, for example, fetching the
time at different machines can give different values. In the
calculus as it stands, however, such overloading is unobserv-
able since every function application has a single execution
location, dictated by the a on the nearest enclosing λ. (We
also wish to study a variant where execution locations can
be non-deterministic, but this is deferred for now.)

Example.
An example will illustrate the function of all these loca-

tion annotations. For readability, this example avails of the
syntactic sugar leta x = M in N for (λax.N)M .

letc getCredentials = λcprompt.
letc y = print prompt in
read

in
letc authenticate = λsx.
lets creds = getCredentials "Enter name, password:" in
if (equal(creds, "ezra:opensesame")) then
"the secret document"

else "Access denied"

in authenticate()

Here let print and read be client-side functions, while equal
is server-side Also imagine that we have extended the cal-
culus with boolean constants and a conditional construct,
if M then Nt else Nf .

This example begins on the client and invokes the server-
side function authenticate. This server-side function begins
by calling the client function getCredentials, thus moving
control back to the client, where getCredentials prints a
prompt and reads back the credentials (username and pass-
word, say) from the client. The fact that getCredentials is
defined by a λc abstraction means that its body will run at
the client, and so the calls to print and read can take place
locally, rather than with a move across the network for each
call.

Furthermore, the fact that authenticate is defined by a λs

abstraction means that its code should not be available to
the client. Hence the constant "ezra:opensesame", corre-
sponding to the correct username and password, will not be
revealed.

3. CLIENT/SERVER CALCULUS
Our target, λcs, defined in Figure 2, models a pair of in-

teracting agents, a client and a server, each a first-order
calculus.

Being first-order, the application form f(~M) is n-ary and
allows only a function name, f , in the function position.
The calculus also introduces constructor applications of the
form F (~M), which can be seen as a tagged tuple. Construc-
tor applications are destructed by the case-analysis form
case M of A. A list A of case alternatives is well-formed
if it defines each name only once.

The client may make requests to the server, using the form
req f (~M). The server cannot make requests and can only

run in response to client requests. Note that the req f (~M)
form has no meaning in server position; it may lead to a
stuck configuration.

A configuration K of this calculus comes in one of two
forms: a client-side configuration (M ; ·) consisting of an ac-
tive client term M and a quiescent server (represented by
the dot), or a server-side configuration (E; M) consisting
of an active server term M and a suspended client context
E, which is waiting for the server’s response. Although the
client and server are in some sense independent agents, they
interact in a synchronous fashion: upon making a request,
the client blocks waiting for the server, and upon completing
a request, the server is idle until the next request.

The construction of configurations visibly enforces the
constraint that there be at most one request active between

Syntax

function names f, g
constructor names F ,G

values U, V, W ::= x | c | F (~V)

terms L, M, N, X ::= x | c | f(~M)

| F (~M) | case M of A
| req f (~M)

alternative sets A a set of A items
case alternatives A ::= F (~x) ⇒ M

evaluation contexts E ::= [] | f(~V , E, ~M)

| F (~V , E, ~M)
| case E of A
| req f (~V , E, ~M)

configurations K ::= (M ; ·) | (E; M)
function definitions D ::= f(~x) = M

definition set D, C,S ::= letrec D and · · · and D

continuation values J, K ::= k | App(V, W, K) | F (~V , K)

Semantics

K −→C,S K′

Client: (E[f(~V)]; ·) −→C,S (E[M{~V /~x}]; ·)
if (f(~x) = M) ∈ C

(E[case (F (~V)) of A]; ·) −→C,S (E[M{~V /~x}]; ·)
if (F (~x) ⇒ M) ∈ A

Server: (E; E′[f(~V)]) −→C,S (E; E′[M{~V /~x}])
if (f(~x) = M) ∈ S

(E; E′[case (F (~V)) of A]) −→C,S (E; E′[M{~V /~x}])
if (F (~x) ⇒ M) ∈ A

Communication:

(E[req f (~V)]; ·) −→C,S (E; f(~V))

(E; V) −→C,S (E[V]; ·)

Figure 2: The client-server calculus (λcs).

Call to f (server)

Call to g (client)

Return r from g

Return s from f

{Call f}

{Call g, k}

{Continue r, k}

{Return s}

main Client Server

Source language:
call/return style

Implementation:
request/response style

f g

Figure 3: Simulation of λrpc calls by λcs requests.

this pair of client and server: there can be no back-and-forth
call patterns, no nested calls.

Reduction takes place in the context of a pair of definition
sets, one for each agent, thus the reduction judgment takes
the form K −→C,S K′. Each definition f(~x) = M defines
the function name f , taking arguments ~x, to be the term
M . The variables ~x are thus bound in M . A definition set
is only well-formed if it uniquely defines each name. This
does not preclude the other definition set, in a pair (C,S),
from also defining the same name.

The reflexive, transitive closure of the relation −→C,S
is written with a double-headed arrow −�C,S , where the
definition-sets are fixed throughout the sequence.

3.1 Translation from λrpc to λcs

While the λrpc calculus allows arbitrarily deep nesting of
control contexts between locations, λcs allows only for one
frame of control to be waiting on the client while the server
is running. To simulate arbitrarily nested control contexts,
the translation uses the pattern seen in Figure 3. The left-
hand diagram shows a sequence of calls between client and
server functions. The solid line indicates the active line of
control as it enters these calls, while the dashed line indicates
a control context which is waiting for a function to return.
In this example, main is a client function which calls a server
function f which in turn calls a client function g.

The right-hand diagram shows the same series of calls as
they occur at the low level. The dashed line again indicates a
suspended control context. During the time when g has been
invoked but has not yet returned a value, the server does not
store the control context—or for that matter anything else
about the ongoing computation—though at the high level f
is still waiting on the server for the value from g. But the
server’s state is encapsulated in the value k, which it sends to
the client along with a specification of the client-side call to
perform, including a function reference and any arguments.

To orchestrate this interaction, the translation takes the
single source program to two targets, one each for client and
server. In so doing, each side’s non-local functions are re-
placed by a stub function, which, rather than implementing
the function directly, implements it by an RPC call to the
other location. On the client side, this is easy: the client
simply makes a request (with req) indicating the function

(−)◦− : Vλrpc → Vλcs

(λax.N)◦ = pλax.Nq(~y) ~y = fv(λax.N)

x◦ = x

c◦ = c

(−)∗ : Mλrpc → Mλcs|c

V ∗ = V ◦

(LM)∗ = apply(L∗, M∗)

(−)†(−) : Mλrpc → Vλcs → Mλcs|s

V †[] = cont([], V ◦)

(LM)†[] = L†(pMq(~y, [])) where ~y = fv(M)

Figure 4: Term-level translations from λrpc to λcs.

coll f (LM) = f(LM) ∪ coll f L ∪ coll f M

coll f (λax.N) = f(λax.N) ∪ coll f N

coll f V = f(V) if V 6= λax.N

Figure 5: Generic traversal function for λrpc terms.

and its arguments.
On the server side, the stub function tunnels its request

through the response channel. It returns from its existing
request context a representation of the call and the server-
side continuation.

The client keeps a trampoline function on the stack under-
neath any server request, capable of recognizing the tunneled
call and carrying it out. Upon completing this, it places a
new request to the server, sending the call’s result and the
server continuation. The server resumes its computation by
applying the continuation to the result.

Figures 4–7 give the translation. Figure 4 gives term-level
translations (−)◦, (−)∗ and (−)†, which construct values,
client terms, and server contexts, respectively. The (−)†

translation produces a context, which is expected to be filled
by a continuation (which is a server value), so we will write N†K
for the translation of N to a server term with continua-
tion K. The functions (−)∗ and (−)†(−) are only defined for
λrpc client and server terms, respectively. Functions J−Kc,top

(Fig. 6) and J−Ks,top (Fig. 7) translate a source term to a
definition set, making use of the generic traversal function
coll (Fig. 5), which computes the union of the images under
f of each subterm of a given term.

The function definitions for apply , cont and tramp are pro-
duced by the top-level translations, J−Kc,top and J−Ks,top, de-
fined in Figures 6–7. The former two, apply and cont , handle
the defunctionalized dispatch to the appropriate function or
continuation, while tramp is the trampoline, which tunnels
server-to-client requests through responses. Let arg and k be
special reserved variable names not appearing in the source
program. The generic traversal function coll f M of Fig-
ure 5 computes the union of the images under f of all the
subterms M .

Rather than treating functions as if they already carry

J−Kc,top : Mλrpc → Dλcs

JMKc,top = letrec apply(fun, arg) = case fun of JMKc,fun

and tramp(x) = case x of

| Call(f, x, k) ⇒
tramp(req cont (k, apply(f, x)))

| Return(x) ⇒ x

Jλcx.NKc,fun,aux = {pλcx.Nq(~y) ⇒ N∗{arg/x}}
where ~y = fv(λx.N)

Jλsx.NKc,fun,aux =

{pλsx.Nq(~y) ⇒ tramp(req apply (pλsx.Nq(~y), arg, Fin()))}
where ~y = fv(λx.N)

JMKc,fun,aux = {} if M 6= λax.N

JMKc,fun = coll (J−Kc,fun,aux) M

Figure 6: Top-level translation, λrpc to λcs (client).

J−Ks,top : Mλrpc → Dλcs

JMKs,top = letrec apply(fun, arg, k) = case fun of JMKs,fun

and cont(k, arg) = case k of

JMKs,cont

| App(fun, k) ⇒ apply(fun, arg , k)

| Fin() ⇒ Return(arg)

Jλcx.NKs,fun,aux =

{pλcx.Nq(~y) ⇒ Call(pλcx.Nq(~y), arg , k)}
where ~y = fv(λx.N)

Jλsx.NKs,fun,aux = {pλsx.Nq(~y) ⇒ (N†k){arg/x}}
where ~y = fv(λx.N)

JMKs,fun,aux = {} if M 6= λax.N

JMKs,fun = coll (J−Ks,fun,aux) M

JLMKs,cont,aux = {pMq(~y, k) ⇒ M†(App(arg , k))}
where ~y = fv(M)

JNKs,cont,aux = {} if N 6= LM

JMKs,cont = coll (J−Ks,cont,aux) M

Figure 7: Top-level translation, λrpc to λcs (server).

unique labels (as in typical formalizations of defunctional-
ization), we assume an injective function that maps source
terms into the space of constructor names. We write pMq
for the name assigned to the term M by this function. An
example is the function that collects the names assigned to
immediate subterms and uses a hash function to digest these
into a new name; issues of possible hash collisions would
have to be treated delicately. We highlight the idea of using
a function of the term itself because we wish for the labels
to be robust in the face of server reboots—essential in the
web environment—and even, perhaps, changes to unrelated
parts of the code.

The bodies of the two apply functions will have a case for
each abstraction appearing in the source term, regardless
of location. For a location’s own abstractions it gets a full
definition but for the other’s abstractions the case will be
a mere stub. This stub dispatches a request to the other
location, to apply the function to the given arguments.

The cont function is defined only on the server, because
it arises from the CPS translation, which is only applied on
the server side; it has a case for each continuation produced.
This includes one for evaluating the argument subterm of
each server-located application, one called App for applying
a function to an argument, and one called Fin which returns
a value to the client.

Recall the classic CPS translation for applications:

(LM)cpsK = Lcps(λf. Mcps(λx. fxK)).

The outer underlined term corresponds to a continuation
that is defunctionalized as pMq. The inner one is defunc-
tionalized as App(f, K). Finally, recall that CPS always
requires a “top-level” continuation, usually λx.x, to extract
a value from a CPS term; this corresponds to Fin.

The tramp function implements the trampoline. Its proto-
col is as follows: when the client first needs to make a server
call, it makes a request wrapped in tramp. The server will
either complete this call itself, without any client calls, or it
will have to make a client call along the way. If it needs to
make a client call, it returns a specification of that call as
a value Call(fun, arg , k), where fun and arg specify the call
and k is the current continuation. The tramp function recog-
nizes these constructions and evaluates the necessary terms
locally, then places another request to the server to apply
k to whatever value resulted, again wrapping the request in
tramp. When the server finally completes its original call, it
returns the value as the argument of the Return construc-
tor; the tramp function recognizes this as the result of the
original server call, so it simply returns x. As an invariant,
the client always wraps its server-requests in a call to tramp.
This way it can always handle Call responses.

To relate the two calculi, we use a reverse translation,
from λcs to λrpc, given in Figure 8. All of the functions used
in this translation are parameterized on the definition sets C
and S. The function (−)•C,S takes λcs values to λrpc values.

Next (−)?
C,S and (−)‡C,S take client-side and server-side λcs

terms (respectively) to λrpc terms. And (−)$C,S takes λcs val-
ues representing continuations to λrpc evaluation contexts.
The function (−)• hits every value and (−)? and (−)‡(−)
hit every λrpc term.

These functions are defined only on λcs terms and defini-
tions in the range of the corresponding forward translation.
In particular, M‡

C,S and M?
C,S are not defined unless both

(−)•−,− : Vλcs → Dλcs → Dλcs → Vλrpc

c•C,S = c

x•C,S = x

(F (~V))•C,S = λcx.(N{x/arg})?
C,S{~V •

C,S/~y}
if (F (~y) ⇒ N) ∈ cases(apply , C) and N 6= tramp(req · ·)

where x fresh for ~y, ~V

(F (~V))•C,S = λsx.(N{x/arg})‡C,S{~V •
C,S/~y}

if (F (~y) ⇒ N) ∈ cases(apply ,S) and N 6= Call(·, ·, ·)
where x fresh for ~y, ~V

(−)?
−,− : Mλcs|c → Dλcs → Dλcs → Mλrpc

V ?
C,S = V •

C,S

(apply(L, M))?
C,S = L?

C,SM?
C,S

(−)‡−,− : Mλcs|s → Dλcs → Dλcs → Mλrpc

(cont(K, V))‡C,S = K$
C,S [V •

C,S]

(apply(V, W, K))‡C,S = K$
C,S [V •

C,SW •
C,S]

(−)$−,− : Vλcs → Dλcs → Dλcs → (Mλrpc → Mλrpc)

k$
C,S [] = []

(App(V, K))$C,S [] = K$
C,S [V •

C,S []]

(F (~V , K))$C,S [] = K$
C,S [[](M{~V •

C,S/~y})]
if (F (~y, k) ⇒ M†(App(arg , k))) ∈ cases(cont ,S)

and F 6= Fin, F 6= App

Figure 8: Reverse translation, λcs to λrpc.

definition sets C and S define all the constructors appearing
in M .

Provided (C,S) are in the image of (J−Kc,top, J−Ks,top),

then K$
C,S is a term context for λrpc; by a simple induc-

tive argument we can see that it is always an evaluation
context: it meets the grammar E ::= [] | V E | EM .

To extract the alternatives of case-expressions from func-
tion bodies, we use a function cases, defined as follows:

Definition 1. The function cases is defined by the rule:

(f(x, ~y) = case x of A) ∈ D
cases(f,D) = A

This relies on the fact that each of our special functions
dispatches on the first of its arguments, whether that be
the argument fun for apply , or k for cont ; the dispatching
argument is conveniently always the first.

3.2 Correctness
During reduction we may lose subterms which would have

given rise to defunctionalized definitions; thus the reduction
of a term does not have the same definition-set as its an-
cestor. Still, all the definitions it needs were generated by
the original term; we formalize this as follows. The contain-
ment holds just when the names defined in the right-hand
side are all defined in the left-hand side and upon inspect-
ing corresponding function definitions, either the bodies are
identical or they are both case analyses where the left-hand
side contains all the alternatives of the right-hand side.

Definition 2 (Definition containment). We say a
definition set D contains D′, written D > D′, iff for each
definition f(~x) = M ′ in D′ there is a definition f(~x) = M
in D and either M = M ′ or cases(f,D) ⊇ cases(f,D′).

Lemma 1. For any subterm M ′ of M , if C > JMKc,top

then C > JM ′Kc,top and if S > JMKs,top then S > JM ′Ks,top.

Definitions produced by the top-level translations are closed :
for each term that we find translated on the right-hand side
of a definition case, all of that term’s definitions can also be
found amongst the definitions. More precisely:

Lemma 2 (Closure, definition sets). Let C and S
be in the range of J−Kc,top and J−Ks,top respectively.

• If N∗{arg/x} is the right-hand side of an element of
cases(apply , C) then C > JNKc,top.

• If (N†k){arg/x} is the right-hand side of an element
of cases(apply ,S) then S > JNKs,top.

• If M†(App(arg , k)) is the right-hand side of an
element of cases(cont ,S) then S > JMKs,top.

Proof. Let X be the term such that (C,S) = (JXKc,top, JXKs,top).
Each element of cases(apply , C) that has a right-hand side
of the form N∗{arg/x} is produced by a term λcx.N , a sub-
term of X. As N is a subterm of X, then, C > JNKc,top. A
similar argument holds for the other two consequents.

Lemma 3 (Retraction). When C > JMKc,top and S >
JMKs,top, we have for each M

(i) (M◦)•C,S = M provided M is a value,

(ii) (M∗)?
C,S = M , and

(iii) (M†K)‡C,S = K$
C,SM for each K in λcs.

Proof. By induction on the structure of M .

The reverse translation commutes with substitution.

Lemma 4 (Substitution). Given definition sets C, S

V •
C,S{W •

C,S/x} = (V {W/x})•C,S

M‡
C,S{W

•
C,S/x} = (M{W/x})‡C,S and

M?
C,S{W •

C,S/x} = (M{W/x})?
C,S .

Proof. By induction on V or M as appropriate.

Now we show the soundness result, which is fairly routine.

Lemma 5 (Soundness). For any term M and substi-
tution σ in λrpc, together with definition sets C and S such
that C > JMKc,top and S > JMKs,top, we have the following
for all V and K:

(i) M∗σ −�C,S V
implies Mσ•

C,S ⇓c V •
C,S and

(ii) tramp([]); (M†K)σ −�C,S tramp([]); cont(K, V)
implies Mσ•

C,S ⇓s V •
C,S .

Proof. By induction on the length of the λcs reduction
sequence. Throughout the induction, σ is kept general.

When using the inductive hypothesis, the preconditions
that C > JMKc,top and S > JMKs,top will be maintained be-
cause we will only use the inductive hypothesis on subterms
of the M and on terms N whose translations are part of the
rhs of definitions in C,S and thus for which C,S > JNKc,top

and JNKs,top (by the closure of definition-sets).
In this proof we omit the subscripts C, S on reductions, be-

cause they are unchanged throughout reduction sequences,
and on the reverse-translation functions, because they are
unchanged throughout the recursive calls thereof.

Take cases on the structure of the starting term, either (i)
M∗σ or (ii) (M†K)σ, and split the conclusion into cases for
(i) and (ii);

• Case LM for (i).

By hypothesis, we have (LM)∗σ −� V . By definition,
(LM)∗σ = apply(L∗σ, M∗σ).

In order for the reduction not to get stuck, it must be
that

– L∗σ −� F (~V) with (F (~V))• = λax.N{~V •/~y} for
fresh x and some a and N .

– M∗σ reduces to a value; call it W .

The freshness of x will allow us to equate simultaneous
and sequential substitutions involving x.

The reduction begins as follows:

(LM)∗σ = apply(L∗σ, M∗σ)

−� apply(F (~V), M∗σ)

−� apply(F (~V), W)

Applying the inductive hypothesis twice, using Lemma 2
to obtain the containment condition, we get

Lσ• ⇓c (F (~V))• = λcx.N{~V •/~y},
Mσ• ⇓c W • and

We now show, by cases on a, the third leg of Beta,
namely N{~V •/~y}{W •/x} ⇓a V •.

If a = c then N is such that (F (~y) ⇒ N∗{arg/x}) ∈
cases(apply , C), by definition of (−)•.

Now the reduction finishes as:

apply(F (~V), W)

−� N∗{~V /~y, W/x} = N∗{~V /~y}{W/x}
−� V

So by the inductive hypothesis (invoking Lemma 2),

N{~V •/~y}{W •/x} ⇓c V •.

If a = s then N is such that

(F (~y) ⇒ (N†k){arg/x})) ∈ cases(apply ,S) and

(F (~y) ⇒ tramp(req apply (F (~y), arg ,Fin())))

∈ cases(apply , C).

Now the reduction finishes as

apply(F (~V), W)

−� tramp(req apply (F (~V), W,Fin()))

−� tramp([]); apply(F (~V), W,Fin())

−� tramp([]); (N†(Fin())){~V /~y, W/x}
= (N†(Fin())){~V /~y}{W/x}
−� tramp([]); cont(Fin(), V)

−� V

So by the inductive hypothesis (invoking Lemma 2),

N{~V •/~y}{W •/x} ⇓c V •.

The judgment (LM)σ• ⇓c V • follows by Beta. huzzah!

• Case LM for (ii).

By hypothesis, we have for some K

tramp([]); ((LM)†K)σ −� tramp([]); cont(K, V).

By definition, (LM)†K = L†(pMq(~z, K)), letting ~z =
fv(M).

In order for the reduction not to get stuck, it must be
that:

1. pMq(~z, k) ⇒ M†(App(arg , k)) is in cases(cont ,S)

2. (M†K)σ reduces to a term of the form cont(K, W)
and

3. (L†K)σ reduces to a term of the form cont(K,F (~y)),
with (F (~y))• = λax.N for fresh x and some a
and N .

The reduction begins as follows:

tramp([]); ((LM)†K)σ

= tramp([]); (L†(pMq(~z, K)))σ

−� tramp([]); cont((pMq(~z, K))σ,F (~V))

= tramp([]); cont(pMq(~zσ, K),F (~V))

−→ tramp([]); (M†(App(F (~V), K))){(~zσ)/~z}
= tramp([]); (M†k){App(F (~V), K)/k, (~zσ)/~z}
−� tramp([]); cont(App(F (~V), K), W)

−→ tramp([]); apply(F (~V), W, K)

Applying the inductive hypothesis twice, we get

Lσ• ⇓s (F (~V))• = λsx.N{~V •/~y} and

Mσ• ⇓s W •

Now we show the third leg of Beta, namely
N{~V •/~y}{W •/x} ⇓a V •, by taking cases on a.

If a = s then N is such that (F (~y) ⇒ (N†k){arg/x})) ∈
cases(apply,S). So the reduction continues as

tramp([]); apply(F (~V), W, k)

−→ tramp([]); (N†k){~V /~y, W/x}
= (N†k){~V /~y}{W/x}

−� tramp([]); cont(k, V)

So by the inductive hypothesis (invoking Lemma 2),

N{~V •/~y}{W •/x} ⇓s V •.

If a = c then N is such that

(F (~y) ⇒ N∗{arg/x}) ∈ cases(apply , C) and

(F (~y) ⇒ Call(F (~y), arg , k)) ∈ cases(apply ,S).

So the reduction continues as:

tramp([]); apply(F (~V), W, k)

−→ tramp([]); Call(F (~V), W, k)

−→ tramp(Call(F (~V), W, k))

−→ tramp(req cont (k, apply(F (~V), W)))

−→ tramp(req cont (k, N∗{~V /~y, W/x}))
= tramp(req cont (k, N∗{~V /~y}{W/x}))
−� tramp(req cont (k, V))

−� tramp([]); cont(k, V)

So by the inductive hypothesis (invoking Lemma 2),

N{~V •/~y}{W •/x} ⇓s V •.

The judgment (LM)σ• ⇓s V • follows by Beta. huzzah!

• Case V for (i) and (ii). Write W for M , which must
also be a value.

Because the starting term is a value, the reduction is
of zero steps: In the client case: M∗σ = V −� V . We
have that M∗ = W ◦ so W ◦σ = V .

In the server case: (M†K)σ = cont(K, V) −� cont(K, V).
We have that M†K = cont(K, W ◦) so W ◦σ = V .

Using the substitution lemma (Lemma 4) and the in-
verseness of (−)• to (−)◦, we get (W ◦σ)• = Wσ•.
Now (W ◦σ)• = V • so V • = Mσ•. And so the reduc-
tion Mσ• ⇓a V follows by Value. huzzah! �

We turn to the completeness of the translation. First we
show that continuations K in λcs are closely related to eval-
uation contexts E in λrpc. Using this we show the possible
forms of λcs terms that map to λrpc application terms.

Lemma 6. Given definition-sets C,S and a continuation
K, one of the following holds:

(a) The form of K$
C,S is [] and K = k.

(b) The form of K$
C,S is V E and there exist J, V ′ such that

K = J{App(V ′, k)/k},
V ′•

C,S = V and

J$
C,S = E.

(c) The form of K$
C,S is EM and there exist J, M ′, F, ~V

such that

K = J{F (~V , k)/k},
(F (~y, k) ⇒ M ′{App(arg , k)/k}) ∈ cases(cont ,S),

(M ′{~V /~y})‡C,S = M and

J$
C,S = E.

Proof. The proof is by induction on K. Take cases on
its form:

• Case k. By def., K$
C,S = [], proving (a). huzzah!

• Case App(U, K′). By definition, K$
C,S = K′$

C,S [U•
C,S []].

If K′ = k, then we prove (b). By def., K′$
C,S = [].

Letting J = k and E = [] we get K = J{App(U, k)/k}
and J$

C,S = E as needed.

If K′ is not k then the induction hypothesis gives
us one of the cases (b) or (c); we prove the same

case. The IH provides J ′ and E′ with J ′$
C,S = E′.

Let J = App(U, J ′) and E = E′[U•
C,S []]. By def.,

J$
C,S = E. The required relation between K and J

follows by manipulation of substitutions. The other
needed items (V ′, or F and M ′) carry through from
the inductive hypothesis. huzzah!

• Case G(~W, K′). By definition of (−)$C,S , we have N
such that

(G(~y, k) ⇒ N†(App(arg , k))) ∈ cases(cont ,S)

which gives us K$
C,S = K′$

C,S [[](N{ ~W •
C,S/~y})].

If K′ = k, then we prove (c). By def., K′$
C,S = [].

Let F be G. Letting J = k and E = [] we get

K = J{G(~W, k)/k} and J$
C,S = E as needed. Let M ′

be N†k. Then (M ′{ ~W/~y}))‡C,S = M ′‡
C,S{ ~W •

C,S/~y}) =

N{ ~W •
C,S/~y} as needed.

If K′ is not k then the induction hypothesis gives us
one of the cases (b) or (c); we prove the same case.

The IH provides J ′ and E′ with J ′$
C,S = E′. Let

J = G(~W, J ′) and E = E′[[](N{ ~W •
C,S/~y})]. By def.,

J$
C,S = E. The required relation between K and J

follows by manipulation of substitutions. The other
needed items (V ′, or F and M ′) carry through from
the inductive hypothesis. huzzah! �

Lemma 7 (Applications’ (−)‡-preimage). Given a λcs

term N ′ and λrpc terms L and M with N ′‡
C,S = LM , then

at least one of the following hold:

(a) there exist λcs terms L′, M ′, ~V and name F s.t.:

N ′ = L′{F (~V , k)/k},

L′‡
C,S = L

(M ′{~V /~y})‡C,S = M and

(F (~y, k) ⇒ M ′{App(arg, k)/k}) ∈ cases(cont ,S).

(b) L is a value and there exist λcs terms V ′ and M ′ s.t.:

N ′ = M ′{App(V ′, k)/k},
V ′•

C,S = L and

M ′‡
C,S = M.

(c) L and M are values and there exist λcs terms V ′ and
W ′ s.t.:

N ′ = apply(V ′, W ′, k) and

V ′•
C,S = L and W ′•

C,S = M.

Proof. Define two terms, K and Q, as follows: Consider
the possible forms of N ′: either cont(K, U ′) or apply(U ′, W ′, K).
In the first case, let Q = U ′•

C,S , and in the other let Q =

U ′•
C,SW ′•

C,S . In each case, by def., N ′‡
C,S = K$

C,S [Q].

Take cases on the structure of K$
C,S as enumerated by

Lemma 6.

• Case K$
C,S = []. We show consequent (c).

Take cases on the form of N ′:

– Case cont(K, U ′). Here N ′‡
C,S = U ′•

C,S ; but this
is not an application, a contradiction. huz.

– Case apply(U ′, W ′, K)

Here N ′‡
C,S = U ′•

C,SW ′•
C,S = LM . By structural

equality, then, U ′•
C,S = L and W ′•

C,S = M . huz-
zah!

• Case K$
C,S = V E. We show consequent (b). We

have L = V and E[Q] = M . From Lemma 6 we
have J and V ′ such that K = J{App(V ′, k)/k} with

J$
C,S = E and V ′•

C,S = V . Let M ′ be the one of
cont(J, U ′) or apply(U ′, W ′, J) that matches the form
of N ′. Then N ′ = M ′{App(V, k)/k}. Calculate that

M ′‡
C,S = J$

C,S [Q] = E[Q] = M , as needed. huzzah!

• Case K$
C,S = EN . We show consequent (a). We have

E[Q] = L and N = M . From Lemma 6 we have terms

J , M ′ and ~V and name F so that K = J{F (~V , k)/k},

(F (~y, k) ⇒ M ′{App(arg , k)/k}) ∈ cases(cont ,S),

and (M ′{~V /~y})‡C,S = M and J$
C,S = E; this sup-

plies the needed F , ~V and M ′. Let L′ be the one of
cont(J, U ′) or apply(U ′, W ′, J) that matches the form

of N ′. Then N ′ = L′{F (~V , k)/k}, as needed. Cal-

culate that L′‡
C,S = J$

C,S [Q] = E[Q] = L, as needed.
huzzah! �

Notation 1. Write M ⇀⇀C,S V for

tramp([]); M −�C,S tramp([]); cont(k, V).

The next lemma shows that the behavior of terms in λcs

follows that of the corresponding λrpc terms.

Lemma 8 (Completeness). Given any λcs terms M ,
V and definitions C and S,

(i) If M?
C,S ⇓c V then there exists V ′ with V ′•

C,S = V and
M −�C,S V ′, and

(ii) if M‡
C,S ⇓s V then there exists V ′ with V ′•

C,S = V and

M ⇀⇀C,S V ′

Proof. By induction on the derivation of the given M?
C,S ⇓c

V or M‡
C,S ⇓s V . Take cases on the final step of the deriva-

tion:

• Case Value. The low-level reduction is of zero steps.
The initial low-level term must be a value, V ′, since
its image under the reverse translation is a value. The
initial and final low-level terms are the same because
V ′?

C,S = V ′•
C,S and V ′‡

C,S = V ′•
C,S on values. huzzah!

• Case Beta. Recall the rule:

L ⇓a λbx.N M ⇓a W N{W/x} ⇓b V

LM ⇓a V

Take cases on a, the location where the reduction takes
place.

– Case a = c.

Because the starting λcs term maps to LM under
(−)?, it must be of the form apply(L′, M ′) with
L′?

C,S = L and M ′?
C,S = M .

By IH we have normal forms

L′ −� F (~V) and M ′ −� W ′

satisfying

(F (~V))•C,S = λbx.N and W ′•
C,S = W

So the term reduces as follows:

apply(L′, M ′) −� apply(F (~V), W ′)

To finish the reduction, take cases on b.

If b is c then we have N ′ such that

(F (~y) ⇒ N ′) ∈ cases(apply , C)

Therefore

(N ′{x/arg})?
C,S{~V •

C,S/~y} = N(def. of (F (~V))•)

(N ′{x/arg}{~V /~y})?
C,S = N

(N ′{x/arg}{~V /~y})?
C,S{W ′•

C,S/x}
= N{W/x}
= (N ′{x/arg}{~V /~y}{W ′/x})?

C,S

And so by IH

N ′{x/arg}{~V /~y}{W ′/x} −� V ′

with V ′•
C,S = V.

Now we can finish the reduction:

apply(F (~V), W ′)

−→ N ′{~V /~y}{W ′/arg}
−� V ′

which was to be shown.

If b is s then we have N ′ such that

(F (~y) ⇒ tramp(reqapply(F (~y), arg ,Fin())))
∈ cases(apply , C)

and (F (~y) ⇒ N ′) ∈ cases(apply ,S)

Therefore

(N ′{x/arg})‡C,S{~V •
C,S/~y} = N (def. of (F (~V))•)

(N ′{x/arg}{~V /~y})‡C,S = N

(N ′{x/arg}{~V /~y})‡C,S{W
′•
C,S/x}

= N{W/x}
= (N ′{x/arg}{~V /~y}{W ′/x})‡C,S

And so by IH

N ′{x/arg}{~V /~y}{W ′/x} ⇀⇀C,S V ′

with V ′•
C,S = V.

Now we can finish the reduction:

apply(F (~V), W ′)

−� tramp(req apply (F (~V), arg ,Fin()))

−→ tramp([]); apply(F (~V), arg ,Fin())

−→ tramp([]); N ′{~V /~y}{W ′/arg , Fin()/k}

−� tramp([]); cont(Fin(), V ′)

−� tramp(Return(V ′))

−→ V ′

which was to be shown. huzzah!

– Case a = s. Let X be the term such that X‡
C,S =

LM . Lemma 7 nominates the possible forms of
X.

First consider the case of Lemma 7(a). This gives
us terms L′ and M ′ such that

X = L′{G(~U, k)/k}

L′‡
C,S = L,

(M ′{~U/~z})‡C,S = M and

(G(~z, k) ⇒ M ′{App(arg , k)/k}) ∈ cases(cont ,S).

By IH we have these normal forms:

L′ ⇀⇀C,S F (~V) and M ′{~U/~y} ⇀⇀C,S W ′

satisfying

(F (~V))•C,S = λbx.N and W ′•
C,S = W

And so we can trace the reduction of our term:

tramp([]); L′{G(~U, k)/k} (a)

−� tramp([]); cont(G(~U, k), F (~V))

−� tramp([]); M ′{App(F (~V), k)/k} (b)

−� tramp([]); cont(App(F (~V), k), W ′)

−� tramp([]); apply(F (~V), W ′, k) (c)

To finish the reduction, take cases on b.

If b is c then

(F (~y) ⇒ Call(F (~y), arg , k)) ∈ cases(apply ,S)
and (F (~y) ⇒ N ′) ∈ cases(apply , C)

Therefore

(N ′{x/arg})?
C,S{~V •

C,S/~y} = N(def. of (F (~V))•)

(N ′{~V /~y}{x/arg})?
C,S = N

(N ′{~V /~y}{x/arg})?
C,S{W ′•

C,S/x}
= N{W/x}
= (N ′{~V /~y}{x/arg}{W ′

C,S/x})?
C,S

And so by IH

N ′{~V /~y}{x/arg}{W ′
C,S/x} −� V ′

with V ′•
C,S = V

Now we can finish the reduction:

tramp([]); apply(F (~V), W ′, k)

−� tramp([]); Call(F (~V), W ′, k)

−→ tramp(Call(F (~V), W ′, k))

−� tramp(req cont (k, apply(F (~V), W ′)))

−→ tramp(req cont (k, N{~V /~y, W ′/arg}))
−� tramp(req cont (k, V ′))

−→ tramp([]); cont(k, V ′)

which was to be shown.

If b is s then we have N ′ such that

(F (~y) ⇒ N ′) ∈ cases(apply ,S)

Therefore

(N ′{x/arg})‡C,S{~V •
C,S/~y} = N(def. of (F (~V))•)

(N ′{x/arg}{~V /~y})‡C,S = N

(N ′{x/arg}{~V /~y})‡C,S{W
′•
C,S/x}

= N{W/x}
= (N ′{x/arg}{~V /~y}{W ′/x})‡C,S

And so by IH

N ′{x/arg}{~V /~y}{W ′/x} ⇀⇀C,S V ′

with V ′•
C,S = V

Now we can finish the reduction:

tramp([]); apply(F (~V), W ′, k)

−� tramp([]); N ′{~V /~y, W ′/arg}
−→ tramp([]); cont(k, V ′)

which was to be shown.

Now consider the other cases from Lemma 7, ei-
ther (b) or (c). Then we use the above reduction
sequence but beginning from the correspondingly
marked line. huzzah! �

At last we can state the full correctness result concisely:

Proposition 1. For any closed λrpc term M , value V
and definitions (C,S) = (JMKc,top, JMKs,top),

M ⇓c V ⇐⇒ exists V ′ s.t. M∗ −�C,S V ′ and V ′• = V

Proof. The (⇐) implication is immediate from Lemma 5.
To infer the (⇒) implication from Lemma 8 we need to show
that the given M has an M ′ such that M ′?

C,S = M . We can
construct M ′ = M∗ and the needed relationship follows di-
rectly from the retraction lemma.

4. A RICHER CALCULUS
The calculus λ〈〉 in Figure 9 adds location brackets 〈·〉a to

λrpc and allows unannotated λ-abstractions. The interpreta-
tion of a bracketed expression 〈M〉a in a location-b context
is a computation that evaluates every computation step lex-
ically within M at location a and returns the value to the
location b. Unannotated λ-abstractions are not treated as
values: we want all values to be mobile, and yet the body of
an unannotated abstraction should inherit its required loca-
tion from the surrounding lexical context. Thus, to become

Syntax

constants c
variables x
locations a, b

terms L, M, N ::= 〈M〉a | λx.N | LM | V
values V, W ::= λax.N | x | c

Semantics

M ⇓a V

V ⇓a V (Value)

λx.N ⇓a λax.N (Abstr)

L ⇓a λbx.N M ⇓a W N{W/x} ⇓b V

LM ⇓a V
(Beta)

M ⇓b V

〈M〉b ⇓a V
(Clothe)

Figure 9: The bracket-located lambda calculus, λ〈〉 .

J〈M〉bKa = (λbx.JMKb)() x fresh

Jλx.NKa = λax.JNKa

Jλbx.NKa = λbx.JNKb

JxKa = x

JcKa = c

Figure 10: Translation from λ〈〉 to λrpc.

a value, the abstraction itself must become tagged with this
location, and the Abstr rule attaches this annotation when
it is not already provided.

Figure 10 gives a translation from λ〈〉 to λrpc. Bracketed
terms 〈M〉a are simply treated as applications of located
thunks; and as expected, unannotated abstractions λx.N
inherit their annotation from their lexical context.

The relationship between this calculus and the λcs calcu-
lus is looser than the one previously shown. The forward
translation this time is not injective, so there can be no ex-
act reverse translation as before. (For example, 〈M〉b and
(λbx.M)() go to the same term.) As a result, we would need
to use a simulation relation.

Location brackets such as these may be an interesting lan-
guage feature, allowing programmers to designate the loca-
tion of computation of arbitrary terms.

5. RELATED WORK

Location-aware languages.
Although this the first work we’re aware of that shows

how to implement a location-aware language on top of a
stateless server model, there is much work in the theory and
implementation of location-aware languages.

Lambda 5 [15, 14] is a location-aware calculus with con-

structs for controlling the location and movement of terms
and values. Lambda 5 offers fine control over these runtime
movements, whereas our calculus uses the usual scope dis-
cipline of λ-binding and is profligate with data movements.
Like ours, the translation of Lambda 5 to an operational
model also involves a CPS translation; and where we have
used defunctionalization, it uses the similar technique of clo-
sure conversion; it uses a stateful-server approach and hence
no trampoline is necessary.

Neubauer and Thiemann [17] give an algorithm for split-
ting a location-annotated sequential program into separate
concurrent programs that communicate over channels. By
default the system requires that the two systems be equal
peers, rather than an asymmetrical client-server pair. They
note that “Our framework is applicable to [the special case
of a web application] given a suitable mediator that imple-
ments channels on top of HTTP.”The trampoline technique
we have given provides such a mediator. They use session
types to show that the various processes’ use of channels are
type-correct over the course of the interaction, in contrast
to the always-receptive, stateless server of the present work.

Ohori and Kato [19] describe a locative language where
the program is separated by the programmer into files for
locations and locations can import values via a global name
table. They translate this to a lower-level language with
explicit RPC calls, which are restricted to act on concrete
types communicable over a network. Like Neubauer and
Thiemann’s work, and unlike ours, at the low level the loca-
tions are all mutually accessible.

In a security context, Zdancewic, et al. [24] developed a
calculus with brackets, which served as the model for our λ〈〉 .
Their results show how a type discipline, with type transla-
tions taking place at the brackets, can be used to prove that
certain principals (analogous to locations) cannot inspect
certain values passed across an interface. Such a discipline
could be applied to our calculus, to address information-
flow security between client and server. Matthews and Find-
ler [12] give a nearly identical semantics which models multi-
language programs; here languages act like principals or lo-
cations in the other systems.

Defunctionalization.
After first being introduced in a lucid but informal account

by John Reynolds [22], defunctionalization has been formal-
ized and verified in a typed setting in several papers [3, 2,
21, 18, 1]. We have formalized defunctionalization in an un-
typed setting, which is slightly easier because we need not
segregate the application machinery by type. Danvy and
Nielsen [8] and Danvy and Millikin [7] explore a number of
uses and properties of defunctionalization.

Defunctionalization is very similar to lambda-lifting [11],
but lambda-lifting does not reify a closure as an inspectable
value. Thus it would not be applicable here, where we need
to serialize the function to send across the wire.

Murphy [14] uses closure-conversion in place of our de-
functionalization; the distinction here is that the converted
closures still contain code pointers, rather than using a sta-
ble name to identify each abstraction. These code pointers
are only valid as long as the server is actively running, and
thus it may be difficult to achieve statelessness with such an
approach.

Continuation-Passing.

The continuation-passing transformation has a long and
storied history [23], going back to the 1970s [9, 20].

Trampolined style.
Ganz et al. [10] introduced the trampolined style of tail-

form programs, whereby every tail call is replaced with the
construction of a value containing a thunk for the tail call.
Instead of performing the call, then, the program is return-
ing a representation of the next tail call to be made. The
program is then to be invoked from a loop, called the tram-
poline, which might treat the thunk in various ways, perhaps
invoking it immediately, interjecting other actions, juggling
several thunks or other possibilities. A program in tram-
polined style only does a bounded amount of work before
returning the next thunk. The authors give a translation
taking any program in tail form (which includes CPS) to
one in trampolined style.

The system presented here is an instance of trampolined
style in the sense that each remote call from the client is
wrapped in a trampoline, and all remote calls from the server
to the client are transformed to trampoline bounces. The
fact that local function calls take place directly is a departure
from earlier work.

Extensions.
Corcoran, et al. [6] have extended the location-aware lan-

guage Links with a type system that identifies data items
with security policies, and ensures statically that the poli-
cies are not violated by the program’s runtime behavior, in
view of the low-level locative semantics of Links.

6. CONCLUSIONS AND FUTURE WORK
We’ve shown how to compile a location-aware language to

an asymmetrical, stateless, client-server calculus by using a
CPS transformation and trampoline to represent the server’s
call stack as a value on the client. We hope to extend this
in several directions.

This work uses a source calculus with location annota-
tions, but writing the annotations may burden the program-
mer. It may be possible to automatically assign location an-
notations so as to optimize communication costs, perhaps by
applying the work by Neubauer [16]. Because the dynamic
location behavior of a program may be hard to predict, and
because there are a variety of possible communication and
computation cost models, and perhaps other issues to con-
sider, such as security, the problem is multifaceted.

We hope to extend the source calculus by adding language
features including exceptions, and generalizing by allowing
each annotation to consist of a set of permissible locations
(rather than a single one). We also hope to implement the
λ〈〉 calculus in Links.

As noted in the introduction, this calculus treats only a
simple form of state, namely control state. We might wish
to add a store with mutable references, in the fashion of ML.
References could be treated as located, for example at the
location where they are created. Statelessness could be pre-
served by serializing the store but encrypting server-located
data so that only the server can read them. A security-
conscious type system such as that of Corcoran, et al. [6]
might be particularly useful here.

Other kinds of state can also be problematic, for example
ongoing transactions with other services (disk, databases,

and so on). These are more difficult since they don’t ad-
mit serialization. Future work might accommodate limited
statefulness on the server, with a facility for managing this
state.

7. ACKNOWLEDGEMENTS
Sam Lindley and Ian Stark provided invaluable insights

and discussions in the development of this work. We also
thank the ICFP ’08 and ’09 and PPDP ’09 reviewers.

8. REFERENCES
[1] Anindya Banerjee, Nevin Heintze, and Jon G. Riecke.

Design and correctness of program transformations
based on control-flow analysis. In TACS ’01, volume
2215 of Lecture Notes in Computer Science, pages
420–447. Springer, 2001.

[2] Jeffrey M. Bell, Françoise Bellegarde, and James
Hook. Type-driven defunctionalization. SIGPLAN
Not., 32(8):25–37, 1997.

[3] Jeffrey M. Bell and James Hook. Defunctionalization
of typed programs. Technical report, Oregon Graduate
Institute, 1994.

[4] Andrew D. Birrell and Bruce Jay Nelson.
Implementing remote procedure calls. ACM Trans.
Comput. Syst., 2(1):39–59, 1984.

[5] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy
Yallop. Links: Web programming without tiers. In
FMCO ’06, 2006.

[6] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks.
Cross-tier, labeld-based secuirty enforcement for web
applications. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
June 2009. To appear.

[7] Olivier Danvy and Kevin Millikin. Refunctionalization
at work. Technical Report RS-08-4, BRICS, June
2008.

[8] Olivier Danvy and Lasse R. Nielsen.
Defunctionalization at work. In PPDP ’01, pages
162–174. ACM, 2001.

[9] Michael J. Fischer. Lambda calculus schemata.
SIGACT News, (14):104–109, 1972.

[10] Steven E. Ganz, Daniel P. Friedman, and Mitchell
Wand. Trampolined style. In ICFP ’99. ACM Press,
September 1999.

[11] Thomas Johnsson. Lambda lifting: transforming
programs to recursive equations. In Proc. of a
conference on Functional programming languages and
computer architecture, pages 190–203, New York, NY,
USA, 1985. Springer-Verlag New York, Inc.

[12] Jacob Matthews and Robert Bruce Findler.
Operational semantics for multi-language programs. In
POPL ’07, pages 3–10, New York, NY, USA, 2007.
ACM.

[13] Jacob Matthews, Robert Bruce Findler, Paul Graunke,
Shriram Krishnamurthi, and Matthias Felleisen.
Automatically restructuring programs for the web.
Automated Software Engineering, 11:337–364, 10 2004.

[14] Tom Murphy, VII. Modal Types for Mobile Code. PhD
thesis, Carnegie Mellon University, 2007.

[15] Tom Murphy, VII, Karl Crary, Robert Harper, and
Frank Pfenning. A symmetric modal lambda calculus

for distributed computing. In LICS ’04, pages
286–295, Washington, DC, USA, 2004. IEEE
Computer Society.

[16] Matthias Neubauer. Multi-Tier Programming. PhD
thesis, Universität Freiburg, 2007.

[17] Matthias Neubauer and Peter Thiemann. From
sequential programs to multi-tier applications by
program transformation. In POPL ’05, pages 221–232,
New York, NY, USA, 2005. ACM Press.

[18] Lasse R. Nielsen. A denotational investigation of
defunctionalization. Technical Report BRICS
RS-00-47, DAIMI, Department of Computer Science,
University of Aarhus, December 2000.

[19] Atsushi Ohori and Kazuhiko Kato. Semantics for
communication primitives in a polymorphic language.
In POPL ’93, pages 99–112, New York, NY, USA,
1993. ACM.

[20] Gordon Plotkin. Call-by-name, call-by-value, and the
lambda calculus. Theoretical Computer Science,
1:125–159, 1975.

[21] François Pottier and Nadji Gauthier. Polymorphic
typed defunctionalization. In POPL ’04, pages 89–98,
New York, NY, USA, 2004. ACM.

[22] John C. Reynolds. Definitional interpreters for
higher-order programming languages. In ACM ’72:
Proceedings of the ACM annual conference, pages
717–740, New York, NY, USA, 1972. ACM Press.

[23] John C. Reynolds. The discoveries of continuations.
LISP and Symbolic Computation, 6(3):233–247, 1993.

[24] Steve Zdancewic, Dan Grossman, and Greg Morrisett.
Principals in programming languages: a syntactic
proof technique. In ICFP ’99, pages 197–207, New
York, NY, USA, 1999. ACM Press.

